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1 Tyden 01 - neuron a perceptron

22. zari 2025

1.1 Turinguav test

Néco jako myslenkovy experiment. Al testem projde pokud lidsky tazatel neni po polozeni
nékolika otazek schopen Fict zda pisemné odpovédi pochazi od ¢lovéka nebo od pocitace. ﬁplny
Turingtv test pak vyzaduje interakci s predmeéty a lidmi v redlném svéte.

Pocita¢ musi umeét: zpracovani jazyka, reprezentaci znalosti, automatické uvazovani, strojové
ucend.
1.2 Perceptron

Vychazi z biologického modelu neuronu. Ma nékolik vstupu a jeden vystup. Kazdy vstup ma
pritazenou véhu, kterd urcuje jeho dulezitost. Také ma urcen prah exitace (aktivace), ktery
rozhodne zda-li se dany neuron na dané vstupy ,aktivuje®

Jednoduchy perceptron je vypocetni jednotka s prahem 6, kterd pri prijeti n vstupt
Zq,Tg, ..., T, pres hrany s prisluSnymi vahami w,, w,, ..., w,, vyda 1 pokud plati nasledujici:

i=1
a jinak 0.
/ M\
W, Weighted Activation
Sum Function Gtk
@ h@ g y
Weights
Inputs
- J/

Obrazek 1: Perceptron.

Obcas se —f oznacuje jako b a Tik4 se ji bias. Alternativné jde perceptron zapsat jako matema-
ticka funkce:

_ J1 pokud wT -z >0
)= {0 jinak

Funkce perceptronu je slozend ze 2 matematickych funkci agregacni funkce R" — R (coz je
vazeny soucet vstupnich hodnot) a aktivaéni funkce R — {0,1} (coz je schodkova funkce —
dobry védét jak vypadé graf). Prah exitace taktéZ muzeme vnimat jako dalsi vstupni vahu.

Priklad vypoctu je jednoduchy, prosté se vynasobi slozky vektoru a vadhy a udéla se soucet,

ktery se pro vysledek porovna s prahem exitace.



1.2.1 Geometricka interpretace perceptronu
Pokud méme 2 vstupy x a y, vdhy a a b a ¢ = —0, pak ndm z nerovnice (ta kde byl predtim

vektor a vahy) vypadne
ar+by+c>0

neboli obecnd rovnice poloroviny. Z toho plyne Ze neuron rozdéluje rovinu piimkou (pfi 3
vstupech by rozdélil prostor polorovinou). Tim rozdéluje i body do kategorii. Vektor vah w slouzi
jako urcovac¢ smeéru tohoto rozdéleni, zatimco prah b urcéi vzdalenost od pocatku souradnic. Z
této geometrie plyne omezeni, Ze perceptron muze resit jen linedrné separabilni problémy.

1.2.2 XOR problém

Pomoci jednoho perceptronu muzeme bez problému reprezentovat AND i OR (viz grafy), ale
XOR (non-ekvivalence) a ekvivalence nejde.

4 N
The XOR ¢
0,1 11 0,1 13
[ ]
0,0 1,0 0,0 1,0
[ ] [ ]
OR XOR
- J

Obrézek 2: OR a XOR v grafu.

Dvé mnoziny bodi A a B v n-rozmérném prostoru se nazyvaji linedrné separovatelné,
pokud existuje n + 1 redlnych ¢isel wy, ..., w, ; takovych, ze kazdy bod (z,...,z,) v A
spliuje

Zwlml > w,,

a kazdy bod (zq,...,x,) v B spliuje

wa < Wy

Prosté se to da rozdélit na ty 2 ¢asti pfimkou a body musi leZet bud’ na jedné nebo druhé strané
(proto ty znaménka nerovnosti).

Perceptron a XOR problém Poznamka 3
Perceptron muze reprezentovat jen linearné separovatelné funkce.
Regeni XOR problému je tedy pouzit vice perceptronu a ,zapojit* je do sebe (vicevrstevné
sité). Stejné jak skldadani logickych funkei pro XOR. V reilném svété problémy nejsou obvykle

linearné separabilni, ale maji Sum. Tady pak nehleddme dokonalé oddéleni, ale minimalizujeme
chybu.



1.3 Uceni perceptronu

Mame néjaka trénovaci data a na zacatku ndhodné perceptron voli vahy. Probihd v iteracich.
Pokud je vystup spravny, tak se vihy nezméni, jinak ano.

P ... pozitivni vzory (label 1)
N ... negativni vzory (label 0)

Hleddme vektor w, ktery ma kladny skalarni soucin se vSemi rozsitenymi vektory reprezento-
vanymi body v mnoziné P a zaporny skalarni soucin s vektory v mnoziné N.

Pro ukédzku se pouzivaji klasické logické funkce (priklady a ukazky v prezentaci 01 na slajdech
60 a dal).
Co se muze perceptron naucit Poznamka 4

Pokud jsou P a N linearné separabilni, perceptron se Hebbovskym ucenim nauci dokonala

po koneéném mnozstvi krokii.

1.4 Vicevrstvé neuronové sité

Prechod k tzv. Multi-layer perceptrons umoznil fesit i neseparabilni tlohy. Organizace do vrstev
je z praktickych divod. Tyto vrstvy lze rozlisit do 3 zdkladnich kategorii: vstupni vrstva
(vpodstaté ani neni vrstvou perceptronit), skryté neurony a vystupni vrstva.



2 Tyden 02 - trénovani vicevrstevnych siti

26. zari 2025

2.1 Dopredna neuronova sit (FFNN)

Anglicky Feedforward Neural Network. Tuhle sit' tedy délime do onéch 3 kategorii/vrstev. Jedna
se o zakladni stavebni kdmen Al a strojového uceni. Jedna se o jednosmérné sité bez zpétné
vazby. Kazdy skryty uzel ma danou aktivacéni funkci f : R — R a hodnotu bias b.

FFNN je orientovany acyklicky graf s ohodnocenymi hranami, kde kazdy uzel je neuron a

kazda hrana je vahové spojeni mezi neurony.

e N
© : : (L)
£ S
\g- ! g-
S 2
ﬁ \g\
> S

- J

Obrazek 3: Detailni pohled na FFNN.
Dohromady da celou funkci F', ktera vznikne skladanim f;,.... Je vyhodnocovana v bodé z, y, z.

Jako aktiva¢ni funkce se pouzivaji rizné funkce (jednoduché je schodkova funkce).

2.2 Trénovani vicevrstvych siti
Nutné 3 zédkladni pojmy:
o Trénovaci mnozZina — sestava z p dvojic (z;,t;) (proi=1,...,p) kdez, e R a t, € R™

o Ztratova funkce — vlastné metoda nejmensich ¢tverc definovana jako:

14
E= 52” 0; — i
i=1

o Gradientni sestup — tim hleddme minimum chyb sité (pomoci derivaci). ,Hybu se*
opatnym smérem néz jde gradient, abych to zmensil (gradient ukazuje smér nejvétsiho
rustu funkce). Dobfe je to vidét na prikladu [TBA z prezentace 02].

2.2.1 Vypocet gradientu
Gradient funkce je vektor skladajici se z parcidlnich derivaci funkce podle kazdé promeénné.

Vzorec pro vypocet:



(22

Oxy 0wy

kde Of je parcidlni derivace (ta fikda jak rychle se méni funkce pokud ménime pouze 1
proménnou).

Chceme aby funkce chyby sité byla hladka a diferencovatelna.

Kvili nevhodnosti puvodni aktivacni funkce, kterd byla schodkovd a nevhodna (mé bod, kde
neni derivace a vSude jinde je 0), ji nahradime sigmoidni funkci'. V podstaté vyhladime
schodkovou funkci. Pokud bychom chtéli vystupy {—1,1} misto {0,1}, tak pouzijeme funkci
signum, kterou kdyz vyhladime tak ziskame hyperbolicky tangens.

Aktivaéni funkce by nesmi byt linedrni, protoze by to prineslo nékolik problémii:
1. Mohli bychom modelovat jen linedrni funkce
2. [dalsi divody TBA]

Taky nesmi byt polynomicka, protoze by byla omezena schopnost aproximovat slozitéjsi NN.

1
Funkece si ida: =—7:0:R— (0,1
unkce sigmoida: o(z) 5o (0,1)
s N
sgn(x) tanh(x)
1—— 1
-6 -4 -2 2 4 6 = -6 -4 -2 2 4 6
T -1
\ J

Obrézek 4: Signum a jeji vyhlazeni hyperbolicky tangens.

Véta o univerzalni aproximaci Theorem 6

Standardni dopfednd neuronova sit s jedinou skrytou vrstvou obsahujici kone¢ny pocet
neuronu dokéze aproximovat (napodobit) jakoukoli spojitou funkci na kompaktnich pod-
mnozinach R, s libovolnou presnosti.

2.3 Backproagation algoritmus

Jedna se o algoritmus zpétného sifeni, ktery umoznuje minimalizovat chybu a spravné nastavit
vahy v siti.

Pro pouziti backpropagation je nutné rozsirit sit, tak aby pocitala chybovou funkei automaticky.
To se udéla pripojenim vSech j vystupnich uzli na uzel vyhodnocujici funkci %(01']' — tij)2 kde
0;; a t;; je j-ta komponenta vystupniho vektoru. Tyto vystupy jsou secteny a je vydan vystup
E, pro kazdy vzor t,. To vSe je pak seCteno a je vyddna findlni kvadratickd chyba E. Tato sit
tedy umi vypocitat celkovou chybu pro danou trénovaci mnozinu.

'Dneska uz se zase pouzivd ReLU nebo softplus (cca od 2010)



Jediné co v siti mizeme modifikovat jsou vahy. Chybu kterou dostvame oznacime jako E. Jelikoz
FE se pocita Cisté jako slozeni funkci jednotlivych uzli, muzeme vyuzit gradientni sestup k jeji
minimalizaci. F je spojita a diferencovatelna funkce ¢ vah wy, w,, ....

Vypocet gradientu nutny k minimalizaci vypada nédsledovné (vlastné stejné jako predtim u
funkei):

OF OF ok
E =
v (8101’ ow,’” 8wl)

Kazda véha je upravena inkrementem dw; = —vy gf_ kdei =1,....¢ a y je tzv. ucici konstanta
(udéva néco jako velikost kroku).

Pocet vstupnich uzli nemé vliv na fungovani backpropagation. Funguje i pri vice korektné.

2.3.1 Fungovani sité

Funkce sité je sklddani funkci, tedy retézcové pravidlo. Kazdy uzel ma ted 2 c¢asti. Graficky
nacrt nazyvame jako B-diagram.

Obrazek 5: Uzel se 2 ¢astmi

Vyhodnocovani sité probiha ve 2 krocich:
1. feed-forward krok: informace (vstup x) jde zleva a kazdy uzel vyhodnoti f i f’, vysledky
se v ném ulozi a f se posila dal
2. backpropagation krok: sit’ bézi pozpatku a pouzivaji se ulozené hodnoty, vstupem na
pravé strané je 1, prichozi informace k uzlu je doplnéna a vysledek je vynasoben hodnotou
ulozenou v levé ¢asti

Vysledek ktery se shromézdi po backpropagation u vstupniho uzlu je derivaci sitové funkce F
vzhledem ke vstupu z.

feed-forward

Dy
AN

Obrazek 6: Feed-forward krok v siti.

J

Backproagation Theorem 7

Backproagation spravné pocita derivaci funkce sité F' vzhledem ke vstupu z.

10



backpropagation

g'(x) - '(g(x)) p @b 1
J

Obrazek 7: Backpropagation krok v siti.

.

V siti mohou nastat 3 pfipady navazovani neuront na sebe — sklddéni funkei (1 neuron do 1),
s¢itani funkci (2 neurony do 1) a vahové hrany. Price s hodnotami v neuronech je presné
takova jako je nézev (s¢itani = aplikujeme + a skladani = aplikujeme -). U backpropagation je
vstupem zprava 1.

s ~N s ~N
feed-forward backpropagation
A ]
1
x f(x) + f(x)
f(x) + f(x) 1
| f ,
2
NG J
, i s , . J
Obrazek 8: Feed-forward scéitani funkei.

Obrézek 9: Backproagation s¢itani funkci.

Theorem 8

Algoritmus backpropagation spravné pocita derivaci funkce sité F' vzhledem ke vstupu z.
[Ve slajdech je i neuplny dikaz.]

Algoritmus korektné funguje i pro vice nez 1 vstupni uzel (nezévislé proménné). U 2 proménnych

mé sit’ 2 argumenty a my muzeme pocitat parcidlni derivaci vzhledem k z; nebo z,. Pfi
backpropagation kroku se sit’ rozdéli na 2 podsité, pro kazdou proménnou zvI4st.

2.4 Vrstvené FFNN

Vrstvend FFNN je takova, kde jsou uzly usporddany do skrytych vrstev H;, H,, ..., H;.

Hrany ze vSech vstupnich uzli vedou vzdy do vSech uzlt prvni skryté vrstvy H;. Poté vse z H,
vede do H,. A z posledni vrstvy H,. to tedy vede do vystupni vrstvy O (jako output).

11



k skrytych uzll

n vstupnich uzld
njzn youdnisAa w

matice W; matice W,

Obrazek 10: Sit’ se skrytymi vrstvami.

2.4.1 Uceni vrstvené FFN sité

Po ndhodném zvoleni vah se pouzije backpropagation pro korekci. Algoritmus muzeme zapsat
v téchto 4 krocich:
vypocet feed-forward (vzorce pro exitacni hodnoty skrytych uzli, dohromady tvori matici)

—_

2. backpropagation do vystupni vrstvy,
3. backpropagation do skryté vrstvy,
4. aktualizace vah.

Algoritmus skon¢i kdyz je hodnota chybové funkce dostateéné nizka.
[Tady by se dal jesté kazdy ten krok hodné rozepsat (viz prezentace 02, slajdy 38 a ddle)]
Pokud méme vice nez jeden tréninkovy vzor pouzivd se rozsifend sit pro samostatny vypocet
chybové funkce pro kazdy z nich.

Zjednoduseni aproximace Poznamka 10

Libovolnou funkci mohu aproximovat dostateéné velkou siti s jedinou skrytou vrstvou.

2.5 Rezidudlni sité (spojeni)

Pristup k tvorbé velmi hlubokych NN, které nemaji problém mizejicich gradientt. Typicky se
v hlubokych NN uci novou reprezentaci vrstvy ¢ nahrazenim reprezentace ve vrstvé ¢ — 1. Tim
padem se kazda vrstva musi naucit délat néco uzitecného nebo alespon brat uzite¢né informace.

olt) = f(o(i—l)) _ g(i)(W(i)O(i—l))
Myslenkou je ze nova vrstva by méla predchozi reprezentaci jen narusit.
0(1) — gg}) <0(i_1) + f<0<1_1)>>

kde f je rezidium (zména), kterda narusuje standardni chovani prechodu 7 — 1 na i. Pro vypocet
rezidia se pouziva funkce, kterou je NN s jednou nelinedrni vrstvou kombinovana s linearni
vrstvou. Timto dosdhneme, Ze rezidualni sité umozni spolehlivé ucit vyrazné hlubsi NN.

fo) =Vg(Wo)

12



kde V a W jsou naucené vahové matice.

Pokud by V = 0 pak by prosté rezidual f zmizel a vlastné by se jen nic nedélal a vystup by se
predal dal jako by vrstva neexistovala.

13



3 Tyden 03 - pokracovani o trénovani

06. ¥jna 2025

3.1 Kodovani vstupt

Obvykle je to pfimocaré (takze 0 a 1). Vétsinou to jsou totiz vektory hodnot atributia. Odpovida
to prosté booleovskym hodnotam.

Pokud se jednd o numerické atributy, tak se nechaji v ptvodni podobé, ale vhodné se upravi
— 8kdlovani do rozsahu (tfeba mezi 0 a 1), standardizace na nulovy prameér, ... Pokud rostou
exponencialné namapuji se na logaritmickou skalu.

Takze tfeba obrazky (o rozméru X x Y') vniméme jako pixely, coz jsou prosté vektory slozené
z 3XY celociselnych atributt, kde kazdy pixel ma tii hodnoty, protoze RGB.
Kategoricka data Poznamka 11
Kategoricka data nevyjadiuji ¢iselnou hodnotu, ale prislusnost ke kategorii (napf. barva

o¢i).

Mapovani kategorickych data na ¢iselné hodnoty pouzivd metodu one-hot. Kazda kategorie se
zakoduje jako binarni vektor, ve kterém je jedna hodnota rovna 1 a ostatni 0. Problém by mohl
nastat pri velkém poctu kategorii, jelikoz by se stal neefektivni (tisice a vice unikatnich hodnot).
V tomto ptipadé musime pouzit jinou techniku, tfeba embedding.

3.2 Ztratové funkce

P1i odvozeni gradientti jsem pouzili funkci s kvadratickou chybou viz Kapitola 2.2 , coz neni
jedind moznost. Obvykle je lepsi vystup interpretovat jako pravdépodobnost, napr.

p(,negative*) = 0.1
p(,,neutral®) = 0.2
p(,,positive*) = 0.7

Chceme vysokou pravdépodobnost u spravné tiidy logicky.
Negativni logaritmus pravdépodobnosti spravné tridy:
Loss = —log(p( correct_class ))
Loss = —log B, (t; | x;)
N
Loss = — Zlog P, (tj | xj) ... pro N piikladu
j=1

3.2.1 Kr¥izova entropie (cross-entropy)

Znacend jako H(P, Q). Jde o druh miry odli$nosti mezi 2 rozdélenimi pravdépodobnosti P a @
(tedy skuteénou a modelem odhadovanou). Pouziva se tam kde model rozdéluje data do t¥id.
Takze ikd jak moc se model myli pfi urcovani (¢im nizsi tim lepsi).

H(P,Q) = =) P(2)logQ(2)
Nend to vzddalenost, nebot’ H(P, P) = H(P) # 0.

14



3.3 Softmax vrstva

Prevadi surové skore (logity, znacené z;) na pravdépodobnosti tfid. Takze pro d t¥id potrebu-
jeme d vystupnich uzli, kde na kazdém mame pravdépodobnost pro danou tridu. Dohromady
na vsech d uzlech je pak soucet 1. Tuto pravdépodobnost pro tridu ¢ znacime y;.
evi
Yi = =4

S e

j=1

Softmax je v podstaté zobecnéni sigmoidy, protoze ta prevadi realné ¢islo na hodnotu mezi 0 a
1 a pouzivame ji u binarni klasifikace (2 tridy). Pro d = 2 by se softamx zredukoval na sigmoidu.

[Souvislost softmaz a max]

3.4 Problém mizejicich gradienti

Skryté vrstvy v NN obvykle pouzivaji méné aktivacnich funkci nez se pouziva ve vystupnich
vrstvach. U ReLU a softplus se z pozorovani véri, ze pomahaji fesit problém mizejicich gradienti.

Pri trénovani hlubokych NN (s mnoha vrstvami) se muze stédt, ze gradienty jsou prilis malé,
coz zpusobi zpomaleni nebo zastaveni uceni v hlubsich vrstvach. Pro¢? Pti backpropagation
gradienty klesaji pro hluboké vrstvy exponencidlné (derivace aktivacnich funkei jsou mnesi
nez 1). Coz zpusobi, ze vahy v téchto vrstvach se neaktualizuji efektivné. To se projevi na
neschopnosti sité zachytit slozitéjsi vzory.

3.5 Problém explodujicich gradienta

Prosté gradienty naopak rostou moc agresivné a aktualizace vah se stdva nekontrolovatelnou.
Nastava v hlubokych nebo rekurentnich NN.

Data délime na trénovaci a testovaci mnozinu (slouzi presné k tomu, co je v nazvu). Testo-
vaci se snazi odhadnout generaliza¢ni chybu. MuzZe vzniknout problém, Ze se na testovacich
datech zac¢nou objevovat veliké chyby, protoze model ztraci schopnost generalizace (tzv. early
stopping point). Tam bychom to méli ukondit.

Hyperparametr ... cokoliv co je potifeba nastavit pri vzniku sité

4 N\

Pouziva se od 2010 jako aktivacni funkce.

O(z) = {0 pokud z <0

zpokud z >0 max(0, z) x

Obrézek 11: Graf ReLU funkce.

Poznamka 13

Aktivacni funkce musi byt nelinedrni. Jinak bychom mohli modelovat jen linedrni funkce
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Véta o univerzalni aproximaci Theorem 14
Neuronova sit s jednou skrytou vrstvou mize aproximovat jakoukoli spojitou funkci na
kompaktnim mnoziné s libovolnou presnosti, pokud méa dostatecny pocet neuront.

Dalsi moznost je funkce softplus, coz je hladkd aproximace ReL.U.

Leaky ReLU je modifikaci ReLU, kterd umoznuje malé, ale nenulové gradienty i pro zaporné
vstupy. (Prosté ten graf jde od stredu doleva hodné mirné do zapornych hodnot).

Dalsi pak: swish, Exponential Linear Unit.

3.6 Generalizace vs Memorizace

Generalizace ... schopnost modelu se ucit a aplikovat naucené véci na nevidéna data. Model
musi spravné predikovat i na jinych nez trénovacich datech.

Memorizace ... model se uci presné trénovaci data bez snahy najit obecné vzory. Na trénovacich
datech nizka chyba, na nevidénych selhavéi. Byvéa dusledkem pretrénovani modelu (overfittingu).

4 N\

Overfitting Right Fit Underfitting

Classification

Regression o B2

Obrazek 12: Znazornéni overfitting, underfitting a right fit.

3.7 Rychlé trénovani (optimalizace gradientniho sestupu)

Pro¢? Klasicky gradientni sestup je pomaly, citlivy na volbu learning rate, riziko uviznuti v
lokalnim minimu.

Myslenka pochézi z fyziky a vyuziti setrvacnosti pohybu (momentum) => vyuzijeme aktualni
gradient i ten z predchoziho kroku.
Momentum Definice 15
Vzorec pro momentum (vektor rychlosti a aktualizace vah):

vy =av_; —nVE(w,_,)

Wy = Wy + vy

7 .. learning rate, « ... parametr momenta (obvykle 0.9), VE je gradient,

Nevyhodou je, ze musime ladit 2 parametry.
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3.7.1 Nesterov Accelerated Gradient (NAG)

Modifikace momenta. Gradient se nepocitd v aktudlnim bodé, ale v bodé predpovézeném
momentem. Lepsi smérova informace a rychlejsi sestup (rychlejsi reakce na zménu).

vy =a v —nVE(Ww,_ +av_y)
Wy = Wy_g + vy
[K tomuto jsou rizné ilustrace v prezentacich lec@3.pdf okolo slajdu 40]

3.7.2 Aktivni vybér trénovacich dat

Nemusime trénovaci vzory pouzivat rovnomérné, ale pouzivame, ty které prinasi nejveétsi chybu.
V praxi se pouziva spise dopliikoveé.

3.8 Adaptivni algoritmy pro learning rate

Je to technika, kdy kazda vaha dostava vlastni learning rate. Protoze jedno globalni n miize
vést k malym nebo naopak moc velkym zménam v riznych smérech.

3.8.1 Newtonova metoda

Slouzi k hledédni minima chybové funkce E(w). Bere v ivahu i zakfiveni oznacované jako Hessian
(je to matice druhych derivaci; rozdil oproti gradient descent). To da rychlejsi konvergenci a
méné oscilaci. Ale je nutny jeho vypodet, ktery trva O(n?), coZ je nepraktické pro velké NN.
Metoda se pouziva se jen v nékterych tpravich (ne Cistd).

3.8.2 Silva & Almeida’s algoritmus

Slouzi ke zrychleni uceni bez vypoc¢tu Hessianu (zakfiveni funkce, tzn. jak se méni gradient).

Kazdd vdha w; ma vlastni learning rate 7, a sleduje se jeji gradient g = gTE Jednodussi nez

-
Newtonova metoda, ale je podobna.

Idea: vyuzivd informace o druhé derivaci (coz je zakfiveni). Gradient je stabilni = krok lze
zvétsit; nebo gradient méni znaménko = krok se zmensi.

nt-u pokud gf-gi™t >0

¢
H=23nt-d pokud gt gt <0
t
i

n;

n jinak

u > 1 ... zvétseni kroku
d < 1 .. zmenseni kroku

3.8.3 Delta-bar-delat (DBD)

M4 za cil adaptovat vahovou ucici rychlost « s mensimi oscilacemi nez Silva & Almeida. Pokud
se znaménko gradientu pro vahu dlouhodobé neméni, znamena to, ze jdeme spravnym smérem
= zvysime learning rate (7 = v + u, kde u > 0). Pokud by doslo k neshodé razné se krok zmensi
(y=7v-d,kde0<d<1).

Pridéva novy hyperparametr 6 tzv. hladici konstanta (nutnost zvolit), kterd rika jak velkou
vahu prifazujeme gradientim z minulosti.

g =01-0)-9;,+0-79, 4

Je pro ni uveden i pseudokdd v prezentacich (slajd 55 v lece3).
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3.8.4 Resilent backpropagation (Rprop)

Ignoruje velikost gradientu a idi se pouze jeho znaménkem (velikost posunu uréi pravé adap-
tivni krok). Zména véhy je pevnd, tedy nezavisi na velikosti gradientu. Stejné znaménko jako
predtim = zvysime krok A,;, opacné znaménko = snizime krok a pokud je gradient = 0, tak s
vahou nehybeme. Pokud krokem preskoc¢ime minimum, vyuzijeme rollback, ktery se vrati pred
posledni update vah a aktualni gradient se nastavi na 0. Je odolny vii¢i mizejicim i explodujicim
gradientum (kvuli ignoraci velikosti).

—A, pokud gz(-k) >0
Awl?) = (k)
i +A,; pokud g;” <0
0 jinak
3.8.5 AdaGrad

Upravuje learning rate na zakladé toho jak casto se méni gradient (fidi se tedy jeho historif)
zv14st pro kazdy parametr. Vhodny pro #idka data (napi. NLP). Akumulace s (suma ¢tvercu
historickych gradienti)

9 =V, Ei(w,)
S =8_1+T9 0y

a ta se pak pouzije v adaptivni ipraveé
9+

Wy = Wy — N
t+1 t
\/St+€

kde © je ndsobeni po soutadnicich, e slouzi pro stabilitu (obvykle velmi velmi malé) a g jsou
gradienty vzorku.

Kroky jsou kratsi tam kde je historicky velkd derivace (strmé misto), naopak jsou delsi tam kde
je derivace nizkd (kfivka plocha nebo neaktivni).

M4 vice variant — Diagondlni AdaGrad, Plno-maticovy AdaGrad. U nestacionarnich tiloh? muze

uceni zvadnout (prestane se ucit), protoze s, porad roste a tim padem \/% stale klesa.
t

3.8.6 RMSProp
Néstupce AdaGrad. On misto kumulace pouzivd exponencidlni klouzavy prumér (néco jako
pomalé zapominani starych gradienti)
sp=psi—1+(1—p)gi O g,
kde p je decay rate (okolo 0.9). Algoritmus diky tomu zustava aktivni i po dlouhém ¢ase. Pridava

ale novy hyperparametr p.

3.8.7 Adam

Spojeni RMSProp a momenta. Tim padem kombinuje smér i méritko. Dobre funguje uz de-
faultné nastaveny. Casto pouzivany v deep learningu. M4 dost hyperparametrii. M4 2 momenty:
e m, momentum (prumér) — vyhladi kratkodoby Sum v gradientu
o v, momentum (rozptyl) — jako RMSProp

tedy skaluje kroky podle variability gradientu.

2Nestacionarni tloha je takovd, kde se pravidla hry méni v prubéhu casu.
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my = Bymy_y + (1 —By)g,
v, = Bovyq + (1 -By)g, O g,

kde 3 jsou hyperparametry urcujici rychlost exponencialniho zapominani.

4 Tyden 04 - Rekurentni neuronové sité
13. fijna 2025

Jsou to dohromady 4 prezentace, otdzka co z toho presné vybrat.
1. Prezentace ze dne AI — podle mé ta neni tak podstatna
2. Rekurentni NN
3. LLM pro poucené uzivatele
4. Transformer

4.1 Rekurentni NN (RNN)

Pomérné dost dat ma sekven¢ni povahu (¢ili poradi hraje roli) — text, zvuk, ¢asova fada, video.
Na téchto datech bézné NN selhavaji. RNN maji tu vyhodu, ze muzou modelovat zavislosti
mezi sekvencemi a maji schopnost pamatovat si minulost (skryté stavy h,).

hy = f(Whp, - hyy + Wy, - 2)
kde x, je vstup na c¢asovém kroku ¢ a h,_; je skryty stav predchoziho kroku.
Pouzivaji se pri strojovém prekladu, rozpoznani reéi, generovani textu, ...

Maji opakovanou strukturu (tedy obsahuji smycky), coz umoziuje si informace ukladat a
tim padem ta informace pretrva v ¢ase. Predstava viz obrazek.

4 N

o |

N J
Obrazek 13: RNN se skrytym stavem.

4.1.1 Backproagationt through time (BPTT)
Aktualizace vah musi probéhnout pres ¢asové kroky (RNN jsou model s paméti).

Postup:
1. Vypocet feed-forward pres celou ¢asovou sekvenci
2. Rozlozeni chyby v case a zpétnd propagace na kazdy casovy krok
3. Aktualizace vah na zdkladé gradientti chyby kumulované z riiznych casovych kroku
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Opét mohou nastat klasické problémy jako mizejici nebo explodujici gradienty. Resf se pomoci
pokrocilejsich architektur LSTM (long short-term memory) a GRU (Gated Reccurent Units)
je zjednoduseny LSTM.

4.1.2 Long Short-Term Memory (LSTM)

LSTM je specialni typ RNN, ktery dokéZe uchovavat informace po velmi dlouhou dobu.
Jde o specidlni pamétovou buriku. Bunika mé nékolik bran (gates) — forget gate (co se ma
zapomenout), input gate (které nové informace se ulozi) a output gate (co z bunky se pouZije

jako vystup). [Je k tomu pomeérné komplikovany obrdizek v prezentaci]. Vhodnéjs pro slozité&jsi
zévislosti.

Prvkovy souc¢in 2 matic (vektori) o stejné velikosti. Nasobi se vzdy sobé si odpovidajici

Pouziva se k aplikaci bran na jednotlivé slozky vektoril. Tim se nezavislé aktualizuji
jednotlivé slozky vektort.

Dulezita je u néj asi i derivace.

Forget gate f, rozhoduje co se ma zapomenout. Jde o vektor hodnot 0 az 1. Pokud se f, blizi
nule informace jsou témér zapomenuty.

fi= U(Wf [hyqs ] + bf)

Input gate rozhoduje o pridani novych informaci. Ma dvé slozky i,, ktera urcuje jaké hodnoty
se aktualizuji a ¢;, coz jsou nové potencionalné ulozitelné informace.
iy =W~ [hy_y, 2] + )
ét = tanh(W ’ {htfla‘rt] + bc)

C

Output gate rozhoduje co bude na vystupu v daném casovém kroku. Kde o, rozhoduje o
vystupu a h, je skryty stav pro dalsi casovy krok.

op =W, [hy_y, 2] +b,)
h; = o, x tanh(C,)
Aktualizace paméti pro cely LSTM pak probihé nésledovné
¢, =fr X ¢+ X G
kdy f, urc¢uje kolik staré paméti se zapomene a i, kolik nové se prida (c jsou tedy informace).

4.1.3 Grated Recurrent Unit (GRU)

Oproti LSTM mé méné parametru a pouze 2 brany (reset a update). Pouzijeme pokud mame
omezeny vykon, ale potfebujeme efektivni praci s dlouhodobymi znalostmi. Skryty stav a pamét
je spojena do jednoho vektoru.

Skryty stav h, je kombinaci nového a starého stavu.
Reset Gate r, rozhoduje jak moc se ma predchozi skryty stav zapomenout.

ry=o(W,- [ht—hsgt] +b,)
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Update Gate z, naopak rikd jak moc se ma skryty stav aktualizovat o nové informace.
Rt = O-G/VZ ’ [htflv xt] + bz)

Aktualizace skrytého stavu:

hy =2 hy g+ (1 —2) h

Stary stav se vzdy kombinuje s novym kandidatnim stavem h,.

4.2 Bidirectional RNN (BiRNN)

Oproti béznym RNN se zde zpracovavaji data obéma sméry (budoucnost — minulost i minulost
— budoucnost). Nékdy mohou i informace z budoucnsoti ovlivnit soucasny c¢asovy krok (treba
zpracovani prirozeného jazyka). Funguje prosté tak, zZe je rozdélend na 2 samostatné modely
Forward RNN (zpracovani od ¢, po t,) a Backward RNN (zpracovani od ¢,, az po t;). Vystupy
se nasledné spoji a poskytnou uplny kontext h, = [hTt, ﬁt]

4.3 Seq2Seq modely

Zabyvaji se problémy, kde se ma prevést jedna sekvence na druhou (pfeklad, shrnuti textu).
Takze se musi model naucit mapovat vstupni sekvenci na vystupni. Obvykle vyuziva dvé RNN
(encoder — zpracuje vstupni sekvenci a decoder — generuje vystup na zakladé enkodéru).

4 N\
Predictions
Encoder T T T T
| Yl YZ Yn-1 Yn
8 R A A A
w
- | |
o
8 A A A A
T T T p & J - —/ _J
X1 X2 Xn-1 Xn |
Historical data Decoder
~ J

Obrazek 14: Architektura seq2seq modelu.

Postup se da rozdélit do 3 krokii:
1. Vstupni sekvence je zpracovana encodérem — x,, Zs,...,x,, na hy, hy, ..., h,
2. Kod je posledni skryty stav h,, reprezentujici celou vstupni sekvenci
3. Dekodér generuje vystup vy;,¥s, ..., ¥,,. Generovani vystupu je postupné, protoze kazdy
krok zavisi na predchozim vystupu.

P1i dlouhych sekvencich ztraci jednoduchy seq2seq model informace, protoze se vie komprimuje
do jednoho fixniho vektoru. Mohou se také akumulovat chyby kvuli postupné navaznosti na
vSe predchozi. Attention mechanismus umozni modelu se zamérit na ruzné casti vstupni
sekvence pri generovani kazdého vystupniho kroku.

4.4 Atention mechanismy

Pr1i kazdém kroku generovani vystupu model zvazi dilezitost kazdého prvku ve vstupni sekvenci.
Vahy (attention) a jsou urceny na zakladé podobnosti skrytych stavii decoderu s, a encoderu
h;. Vystup je pak vazena kombinace vSech skrytych stavii encoderu.
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Podobnost mezi akrytymi stavy s, a h; odhaduje tzv. score function
score(s,, h;) = s} Wh,;

Normalizace probihd pomoci softmax, aby se jednalo o pravdépodobnostni rozdéleni

escore(st,hi)

Ay . =
t,i n score(sy,hy,)
21 @

Podle typu score function, pak nazyvame cely mechanismus. Tyto mechanismy se lisi zptisobem
vypoc¢tu skére mezi dotazem (Query Q) a klicem (Key K).

Query Q je dotaz reprezentujici aktudlni prvek v dekodéru, kterym chceme najit relevantni
¢ast vstupni sekvence. Kazdy prvek vytvari svuj vlastni dotaz Q.

Key K je vektor reprezentujici kazdy prvek ve vstupni sekvenc a popisujicic jeho charakteri-
stiky. Dotaz @ se porovna s kli¢i K, aby urcil jaky prvek je pro dotaz dulezity.

Value V je vektor nesouci skute¢nou informaci, kterou chceme pouzit pro vystup. Vysledek v
daném casovém kroku je priumér hodnot, kde vahy urcuje dotaz a klic.

¢ Dot-product Attention:

score = s! - h,

+ Bilinear Attention:

score = s} - Wh;

e MLP (multi-layer perceptron) Attention:

score = sL tanh(W, [s,; h;])

4.4.1 Bahdanau attention mechanismus

Byl predstaven v ¢lanku. Architektura zahrnuje BIRNN (skryté stavy z obou sméru se spoji pro
lepsi zachyceni kontextu). Attention skére se pocitd pomoci vicevrstvého perceptronu (MLP).
Attention mechanismus se aplikuje mezi jednotlivymi kroky dekodéru.

4.4.2 Luong attention mechanismus

Opét predstaven v ¢lanku. Pouziva jednodussi jednosmérnou RNN, attention skére se vypoci-
tavd pomoci bilinedrni funkce (zaloZena na skaldrnim soucinu stavu dekodéru a enkodéru).
Attention se aplikuje po kazdém kroku dekodéru a stav s, se pouziva k vypoctu vystupu c,.

4.4.3 Multi-head attention mechanismus

Rozsiteni standardniho attention, které se vyuziva v transformerech. Provadi se nékolik vypocta
paralelné. Kdy kazdy vypocet (hlava) mé vlastni vahy pro dotazy, klice a hodnoty (tim umi
zachytit rizné aspekty).

Matice W slouzi ke shrnuti viech hlav do jediného vystupu (ten pokracuje do dalsich vrstev
modelu).

Vypocet probiha pomoci skalovaného souc¢tu podobnosti:
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KT
Attention(Q, K, V) = softmax (Q ) 174

N

kde d,, je dimenze klice K. Diky tomu muze kazdy prvek v dekodéru vénovat vétsi pozornost
relevantnim ¢astem vstupu na zakladé vypoctenych vah.
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5 Tyden 05 - Transformer

Jedn4 se o model pro strojovy preklad. Sklada se ze 2 hlavnich komponent — enkodéru a dekodéru.
Oproti RNN vidi celou sekvenci najednou, nikoliv jako zpracovani jedné c¢asti po druhé.

4 N
Output
Probabilities

Softmax

Linear
)

Add & Norm
Feed Forward

Add & Norm [+

Multi-Head
Attention

L 5f 3
Add & Norm

Masked Multi-
Head
Attention

Positional @_@ @_@ Positional
Encoding Encoding
Input Output
Embedding Embedding

O Ip

!

Inputs

ik

Add & Norm

Feed Forward

~

Nx

Nx
~» Add & Norm

Multi-Head
Attention

utputs
(shifted right)

N J
Obréazek 15: Architektura Transformer modelu.

5.1 Tokenizace
Proces pii kterém se text déli na mensi ¢asti tzv. tokeny (to muze celé slovo, ¢ast slova subword

nebo jen znak). Prevod na tento format méd umoznuje textu porozumét modeltiim na zpracovani

prirozeného jazyka (NLP).

5.2 Word embedding (WE)

Reprezentace slov jako hustych vektorti v nizkotroviiovém prostoru. Zachyti sémantickd a
syntaktické vztahy. Podobna slova = podobné vektory. Zlepsi vykon NLP oproti tfeba one-hot
encoding. Tady v té oblasti se angazoval Tomas Mikolov.

5.2.1 Word2Vec

Naucit vektory slov podle kontextu v textu. Sémanticky vztah bere jako vektorovou aritmetiku
(king - man + woman % queen). M& nizkou dimenzionalitou (100-300 cca). Trénovano na velkych
korpusech textu. Modely jako BERT nebo GPT jsou na tomto postaveny.

Neékdy se pouzivaji 2 embeddingy. Treba kdyz se jednd o preklad a jsou rozdilné slovniky
pro vstup a vystup. Nevyhodou je vyssi pocet parametrii nebo neprenositelnost naucenych

reprezentaci mezi vstupem a vystupem.
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Poznamka 17

GPT ma sdileny emdebbing.

5.2.2 Skip-Gram

Predpovida kontextova slova na zdkladé daného slova.

5.2.3 Continous Bag of Word (CBOW)

Predpovida dané slovo na zdkladé jeho kontextu.

5.3 Paralelni zpracovani v Transfomeru

Vstup do enkodéru je zpracovan cely najednou. Lze to snadno paralelizovat na GPU, umoznuje
delsi kontext a ma rychlejsi trénink. Enkodér i dekodér se sklada z vice identickych blok, jimiz
prochdzi vstupni véta (posledni pak tvori vystup).

4 N\
featury vystupy
encoder decoder
- -
encoder decoder

gl —— &
o
S|| encoder decoder §_
S| —— S
encoder decoder
S S P S
encoder decoder
vstupy
N\ J

Obrazek 16: Postup enkodéru a dekodéru v Transformeru.

5.4 Poziéni kédovani (PE)

Transfomer pouzivd u enkodér-dekodéru mechanismy pozornosti bez rekurence. Pokud by se
ale pouzival pouze attention mohlo by dojit k prirazeni stejné sémantiky riznym vétam (napr.
» Tom bite a dog.“ a ,,A dog bite Tom*). Proto se pridalo poziéni kédovani.

Kontatencace vektori umoznuje modelu vidét pozicni kddovani nezavisle na word embeddingu.
Pozi¢ni kédovani nevyzaduje stejnou dimenzi jako word embedding. Casto se pouziva funkce
sin nebo cos.

Pozice (pos) je ¢islo 0 az maximalné definovany pocet tokenu ve vété. Pokud je max lenght =

128 a d,, 4o = 512 pak pro kazdou dvojici prvki embeddingu
pos

21
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Muze se prechizet na relativni pozice (coZ je linedrni operace). Toho se vyuziva pii attention
mechanismech, kde model musi uréit jak daleko od sebe jsou jednotlivé pozice (pro korektni
prirazeni vah).

sin(a + b) = sin(a) cos(b) 4 cos(a) sin(b)

cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

5.5 Self Attention

M3 zvazit vztah mezi vSemi slovy ve vété a vyrtvorit kontextové zavislé reprezentace.

Klice (keys) K, dotazy (queries) @, hodnoty (values) V. Do téchto 3 vektoru je transformovano
kazdé slovo pomoci linedrnich projekei.
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6 Tyden 06 - Konvoluéni neuronové sité (CCN)

27. ¥{jna 2025

6.1 Co jsou konvolucni sité?

Specidlni typ hluboké (¢ili vice nez 1 skrytd vrstva) neuronové sité. Mély by efektivné zpraco-
vavat data s prostorovou strukturou (videa, obrazky, ¢asové fady, ...). Mély by z takovych
dat extrahovat vlastnosti (hierarchické rysy) a usetfit to mit mnoho vstupnich parametru.

Z obrazku by se totiz nemél délat linedrni vektor, ktery se pouzije ve FENN (problémy: vysoky

pocet parametri, pamétovd narocnost, riziko preuceni, ignoruji se lokaln{ vlastnosti).

6.2 Slozeni CCN

6.2.1 Konvoluce

Konvoluce je matermatickd operace. Posouvd malé jadro po celém vstupu. Jadrem je mala
matice (tfeba 3 x 3). Ta se uci detekovat lokalni rys — hrana, textura, roh.

4 N
1|lol1|lo|1|o|1 1ol 1 123 31
o1 |1 | |1|1 |0 ol1|1|=|4|5|6|—
1|lof1]of1|o]|1 1ol 2lglo
1|01 (11|01
o111 (0|11 |0
1lol1lol1lol1 Filtr v?St LIP

(Feature map)
- J

Obrézek 17: Konvoluéni filtr.
Filtr udéla s vybranou casti skaldrni soucin a vystupem je feature map.

Hlavni hyperparametry které musime urcit — velikost filtru F' (rozmér jadra), stride S (krok
posunuti), padding P (vypli okraju nulami), pocet filtra K (hloubka vystupu).

Vypocetni vystupni dimenze (W, ) jsou nové rozméry po konvoluci (predpokldddme ¢tver-

out
cové matice):

W, — F+2P
1% _ in +

out T S +1

Detaily derivace v konvoluci: nent az tak podstatné, spise vedet prehledove z prezentace.
1. Vypocet gradientu vah
2. Propagace gradientu vstupu

6.2.2 Pooling vrstva

Slouzi k provedeni redukci dimenze (downsampling). Takze vyrazné snizi prostorovou velikost a
pomaha s transla¢ni toleranci (schopnost rozpoznat objekt bez ohledu na jeho posunuti). Vrstva
se neud¢i (nema zadné vahy). Existuji 2 typy — maz pooling (Castéjsi) a average pooling.

Ma 2 hyperparametry:
« velikost okna (pool size) F
o krok (stride) S
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Max pooling. U max poolingu se pfi FF v kazdém okné vybird maximalni hodnota (néco jako
,Byl dany rys pritomen v této oblasti?*), takze dobte dokaze detekovat dany rys a odfiltrovat
sum. Pri backpropagation se chova jako prepina¢ — z vyssi vrstvy se Sifi pouze do té pozice,
které nesla nejvyssi hodnotu, jinde je 0 gradient.

Average pooling. U average poolingu se pii FF vypocita prameér a dochézi spise k vyhlazeni
dané oblasti. Pouziva se prevazné v poslednich vrstviach. Pfi backpropagation se chova jako
distributor — ¢ili gradient se rovnomérné rozdéli pres vSechny pozice (napt. pfi okné 2x2 kazda
pozice obdrzi % gradientu).

Detaily derivace v pooling vrstviach: TBA.

6.3 Architektura LeNet-5

Prvni komplentni implementace architektury CNN. M¢éla 5 ucitelnych vrstev. subsampling =
pooling

6.4 Architektura AlexNet

Prvni hlubokd CCN (8 vrstev) ve vétsim méfitku. Pouzivédli ReLu (vyrazné zrychleni). Pouziti
Dropout pro prevenci preuceni.

6.5 Architektura ResNet

ResNet zavedl tzv. residual blocks (ty umoznuji zkratku/preskoceni nékterych vrstev), ktery
umoznil satbilni trénink siti se stovkami vrstev.

6.6 Technika Dropout

Brani preuceni. Regularizaéni technika pro FFNN. Pfi kazdé iteraci tréninku (jak feed-forward
tak backpropagation) se ndhodné vypne urc¢ité procento neuronu (obvykle 50 %). Tim padem
se sit’ ,nemuze spolehnout* na uréitou skupinu neuront. Sit’ pak funguje jako trénink mnoha
mensich ridkych siti sdilejicich vahy.

Clever Hans efekt Poznamka 18

Nastane pokud se model nauc¢i chybnou korelaci misto skutecného rysu. Napt. vlci a psi
husky — vstupem byli fotky vlkti na snéhu, pokud sit’ dostala obrazek huskyho na snéhu
oznacila ho chybné za vlka, protoze rozlisovala podle pozadi (tedy snéhu).

6.7 Architektura GoogleNet

GoogleNet pouzivd sady ruzné velkych filtri, nikoliv jen jeden. Velmi hluboké sit’ s mensSim
poctem parametri. Kromeé zvysovani hloubky sité pristoupili i k jejimu rozsiteni do sitky. Pridali
Inception modul, ktery provadi vsechny konvoluce paralelné najednou. Vyuzili global average
pooling k rapidnimu snizeni parametrii. Uz to nebyl jen linearni stoh vrstev, ale slozitéjsi graf.

6.8 Vizualizace a interpretace

6.8.1 Saliency map (mapa duleZitosti)

Ma4 urcit citlivost vystupniho skére S, vzhledem ke zméné vstupniho pixelu X. Matematickym
zékladem je analyza citlivosti — gradient skore cilové tridy c.
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95.(X
M= a)<()|

vvvvv

ktera odhali zkresleni. Prosté jako teplotni mapa prekryje obrazek.

Vypoceet gradientu g‘gg se ziskd provedenim backpropagation s jednickovym gradientem na

vystupu cilové tridy c.
1. Dopfedny prichod vypocita S,

§ . 98,
. Nastavi se gradient gg- ha 1.0

2
3. Gradient se zpétné $if{ az na vystupni vrstvu X
4. Vizualizace pomoci matice (mapy) M

6.8.2 Grad-CAM

Oproti saliency map vytvari ,hrubsi“ bitmapu s vysokou lokalizaci ukazujici jaké regiony vstupu
ovlivnili finalni rozhodnuti. Vyuzivd vystup z posledni konvolu¢ni vrstvy.

6.9 Povidani o cviceni

V prezentacich néco jak pracovat s Pythonem a témi nejznaméjsimi knihovnami. Nevim proc¢
je to zminény az v pulce semestru.
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7 Tyden 07 - Generativni a diskriminacni modely

03. listopadu 2025

Generativni modely generuji nové priklady na zdkladé vzort ve vstupnich datech. Vyzvou
je model naucit efektivni zachyceni vzoru na puvodnich datech. Na vstupnich datech se nauci
rozdéleni a podle toho vytvari vzory, které tomu rozdéleni odpovidaji.

Diskrimina¢ni modely rozlisuji mezi tfidami (kategoriemi) v datech.

7.1 Autoencodery (AE)

Jedn4 se o neuronovou sit, kterd se u¢i komprimovat vstupni data do niZsi reprezentace a poté
je konstruovat zpét. Cilem je naucit model kédovat klicova informace a odstranit redundantni
data. AE maji nékolik pouziti — redukce dimenzionality (komprimace na mensi pocet rysu, napft.
pro predzpracovani), odstranéni Sumu ¢i generovani novych dat (napt. VAE mohou generovat
nové realistické vzorky dat). Jsou to takovy ty priklady co jsme délali na AKTI, kde se generovali
¢islice na obrazku asi 16 x 16 pixela.

AE neni vhodny jako generator. Potfebujeme VAE (Variational Autoencoder), ktery ma
latentni prostor plynuly a smysluplné usporddany. Nevhodnost je z nékolika davodu:
1. Netrénuje latentni prostor, aby byl spojity nebo homogenni (takze tam vznikaji pradna
mista)
2. Dekodér Casto muze generovat Sum, protoze neméa naucenou distribuci dat v prostoru

Déli se na 2 ¢asti — enkodér (prevadi vstup do komprimované reprezentace) a dekodér (rekonst-
ruuje puvodni vstupni data z oné komprimované reprezentace). Enkodér pocita deterministickou
funkci g4 (z|x), kterd zobrazi vstupni data x na jediny latentni vektor z. Dekodér zase naopak
pocita funkci py(x|z), kterd rekonstruuje puvodni vstupni prostor z latentniho vektoru z

4 M\
2 zlllf e

Obrézek 18: Enkodér a dekodér v AE.

Uzks, skrytd vrstva z uprostfed nuti NN naucit se malou latentni reprezentaci.

Latentni reprezentace Poznamka 19

Komprimované reprezentace se také nazyva jako latentni.

Poznamka 20

Autoencoder ... automatickd kédovani data (,auto“ jako ,self*).

Cilem tréninku je minimalizovat rozdil mezi ptivodnim vstupem a rekonstruovanym vystupem.
Trénovaci mnozina je slozend z p dvojic (x;,t;), kde z; € R™ a t, € R™. Jesté je tam néjaka

chybova funkce.
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Pouzivé se pri redukei dimenzionality (komprimace dat tfeba pro predzpracovani), odstranéni
Sumu (napf. rekonstrukce ,rozbitych* dat).

7.2 Variable Autoencoder (VAE)

Oproti AE prid4 pravdépodobnostni inferenci a mé stochastickou reprezentaci. Mapovani neni
tak primocaté jako u AE, ale vstupni data se prevadi na stfedni hodnotu p a odchylku o. Vybér
pak neni deterministikcy, ale ndhodny podle specidlniho rozdéleni.

Vypocet ma 3 kroky:

1. funkce enkodéru — pro vstupni data se spocitaji parametry latentni reprezentace (stfedni
hodnota a smérodatnd odchylka) a na jejich zdkladé se definuje distribuce, ze které se
vzorkuje

2. vzorkovéani (sampling) — vybere se vzorek

3. funkce dekodéru — dekodér bere vybranou latentni proménnou a snazi se rekonstruovat
puvodni vstupni data

Problémem muze byt prostfedni krok vzorkovani, protoze ndhodnosti neumoznuje hledat gra-
dient (neni tam derivace). Tim paddem nemuzeme optimalizovat vihy pomoci backpropagation.
Refen{ je pouzit externi Sum & ~ N(0,1) a vypocet pak je z=pu+ o Oe (O je Hadarmaduv
souc¢in). Takze ndhodnost je pak mimo enkodér a operace jsou deterministické.

7.3 Generative Adversarial Networks (GAN)

Zde se nové instance generuji primo vzorkovanim. Je tvoren 2 neuronovymi sitémi (generéator a
diskrimindtor), které se trénuji navzajem pomoci konkureéniho uceni. Kazd4 sit ma jiny tkol.

Generator

Vytvaii falesnd data z Sumu, kterd se co nejvice podobaji redlnym (napf. obréazky nebo text).
Zacina se nahodnym vektorem z latentniho prostoru z normalniho rozdéleni.

Diskriminator
M4 za kol oznacit jestli se jednd o prava data nebo faleSnd data (vytvorend generdtorem).

Tyto 2 ¢asti mezi sebou souperi, jeden se snazi o co nejvice realistikd data a druhy se snazi je
co nejlépe odhalit (tzv. hra s nulovym souctem).

Proces trénovani je iterativni (opakuje se dokud se nedosdhne pozadované drovné) a probihd
nasledovné:
1. Aktualizace parametra diskriminatoru.
2. Diskrimindtor dostane data prava i falesnd (oboji oznacena). Na téchto datech se uéi
maximalizovat svou sparvnou predpovéd.
3. Po aktualizaci diskriminatoru se jeho nastaveni zmrazi a aktualizuje se generator.
4. Generator dostane ndhodny Sumovy vektor, na jehoz zakladé tvori co nejvice realisticka
data.
5. Ztratova funkce generatoru je nastavena tak, aby minimalizovala rozpoznani diskrimina-
torem.

Pfi trénovani mohou nastat problémy — nestabilita (oscialace vysledki = nikdy se nedosdhne
pozadované trovné) nebo mode collapse (generator netvori rozmanité vystupy).
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Poznamka 21

Tento pristup generuje i ,,obrazy* a ,uméni®. Dokonce se néco z toho i prodalo v redlné
aukci.

7.4 Generativni modely Fizené Sumem (difuzni modely)

Jsou stabilnéjsi alternativou k predchozim zminénym modeltim. Idea pristupu mé 2 stochastické
procesy — dopredna difuze pridavajici Gaussav Sum k ¢istému obrazku dokud z néj neni jen
Sum a zpétna difuze trénujici sit’ odebirat Sum a ziskat ptuvodni obrazek.

4 N
The Forward Process

Xro — X1 —~7 - —7 LT

Original
Data

Complete
Noise

Xo < T1 <« - — TT

The Generative Backward Process

Obrézek 19: Postup difuznitho modelu.

Dopredny proces je fixni a nemé udcitelné parametry. V éasovych krocih se prosté pridava dané
mnozstvi Sumu.

Zpétna difuze je jadrem tohoto pristupu (obvykle architektura U-Net). Vstupem je zasumény
obrazek x, a informace o Case t. Vystup sité ma predikovat pridany sum v danémn kroku.
Chybovou funkei je Means Squared Error (MSE) mezi skuteéné pridanym Sumem a prediko-
vanym Sumem.

7.4.1 Architektura U-Net
Konvoluéni sit, kterd ma tvar pismene U — tilohy kde vstup i vystup musi mit stejné rozliSeni.

[Tady asi dopsat dalsi vétsi podrobnosti z konce 6. prezentace.]
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8 Tyden 08 - Asociativni sité

10. listopadu 2025

Univerzalni aproximacni schopnost Theorem 22

Necht’ f: R™ — R je spojitd funkce definovand na kompantni podmnoziné X mnoziny R".
Pak pro kazdé € > 0 existuje vicevrstevna NN s jednou skrytou vrstvou obsahujici koneény
pocet neuront.

Tzn. kdykoliv je chovani systému popsatelné spojitou funkci na kompaktni mnoziné, lze ho
libovolné popsat NN.

8.1 Asociativni sit (ANN)

Inspirovano lidskou paméti. Jsou schopné se ucit a néasledné si vybavit vzory na zikladé
¢astecnych /zkreslenych vstupt. Jsou 2 typy autoasociativni sité vybavujici si cely vzor z jeho
¢asti a heteroasocitivni sité asociujici rizné vzory mezi sebou.

8.1.1 Hopfieldova sit

Jde o autoasociativni sit. Umoznuje uklddat vzory a nésledné je vybavit z nedplnych (posko-
zenych) verzi. Ma tzv. energetickou funkci. Sit se sanzi dosdhnout stavu s minimalni energii,
kterda odpovida nasledujicimu vzoru

1 n n
E==5 DD i,

j=1 i=1

Jde o jednovrstevnou sit’ a vSechny neurony jsou vzdjemné propojeny (kromé smycek sami na
sebe). Viechny vahy jsou symetrické (w,; = w;;). Neurony maji obvykle diskrétni vystup (tfeba
0al).

Trénink sité se neprovadi pomoci backpropagation (takze je dost odlisny). Pouziva se Hebbovo
pravidlo pro nastaveni vah. Konkrétné:
1. Inicializuje se vahovd matice (w,;; = w;;) a diagondlni prvky jsou 0.
2. Pro kazdy vzor upravime vahy podle Hebbova pravidla (2 neurony aktivni soucasné =
vaha mezi nimi by méla byt posilena).
3. Normalizace nebo skalovani vah pro predejiti nestabilité sité. Bezny pristup je déleni
celkové vahy kazdého spojeni po¢tem neuront v siti.
Mohou byt 2 zdkladni rezimy aktualiazce neuront — asynchronni (neurony se katualizuji jeden

po druhém v ndhodném poradi) a synchronni aktualiazce (aktualizace vSech soucasné, néco
jako paralelni zpracovani).

Kapacita sité je velmi omezend — muze si efektivné uklddat priblizné 15 % vzoru z po¢tu neuront
(tzn. mam 100 neuronu, tak muzu ulozit zhruba 15 vzortu). Obecné se tedy nikde v praxi nyni
nevyuziva.

Vyuzivalo se to pro hledani prijetelnych feseni TSP. Pouzila se reprezentace matici. Pomérné
rozsédhlé a ve slajdech Ta rozepsané.
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8.2 Samoorganizujici se NN (SONN)

NN vyuzivajici kompetitivni uceni. Je ddna mnozina T vzoru a parametr m, coz je pocet
reprezentatnii a vystupnich neuronti. Kazdy reprezentant je ddn vektorem w; (codebook word).
Jsou-li uréeny w a vstup z, tak je vstupu x prifazen reprezentant c, ktery je mu nejblize (podle

c = argmin?_,|| z —w, [). Cilem je najit m reprezentantii, pro které je

1
_ 2
peP

minimalni.
8.2.1 Kompetitivni uéeni

Neurony mezi sebou soutézi o vystup. Obvykle se 7idi pravidlem winner takes all (takze se vzdy
aktivuje jen 1 neuron). Toto zpusobi ,specializaci® neuront na ruzmné signaly. K tomuto uceni
neni potieba externi oznaceni nebo klasifikace vstupi.

8.2.2 Lloyduv algoritmus uéeni (k-means shlukovani)

Zakladni algoritmus pro shlukovou analyzu. Vyuziva kompetitivni uceni bez ucitele. Pracuje v
iteracich.

1. Inicializace reprezentatnt — probiha nahodné, vybere se k bodu, které povazujeme za
pocatecni stredy

n
T. = {p EP|r= argmi{lH zP ||} —w;
]:

2. Prirazeni vstupich bodu — kazdy vstupni bod se prifadi nejbliz§imu reprezentantu

3. Aktualizace reprezentanta — vahové vektory se aktualizuji tak, aby lépe reprezentovaly
prirazené vstupni body, obvykle se pouzivd prumér (tézisté) vSechn bodu pfifezenych k
tomuto reprezentantu

Krok 2. a 3. se opakuji dokud nedojde ke konvergenci (algoritmus se ustali a nedochézi k dalsim
zméndm pri opakovanych vypoctech) reprezentanti.

8.2.3 Kohenovo uceni a mapy

Aktualizace se provadi po kazdém vstupnim vzoru (rychlejsi a flexibilnéjsi adaptace). Pro kazdy
vstupni vektor = se identifikuje vitézny neuron jehoz vahovy vektor w, je mu nejblize podle
Euklidovské vzdélenosti. Aktualizace vahového vektrou vitézného neuronti sousedu se provadi
podle:

~Jwyey +0(t,4,9) - (z— w]-(t)) pokud w; € N;(i) je vitéz
Wit+1) = wyy  jinak

kde 6(t) je rychlost uceni (v ¢ase se zmensuje).

Kohenovy (samoorganizujici se) mapy zavadi topologickou strukturu reprezentanti (2D

miizka). Redukuje dimenzionalitu a prindsi vizualizaci. MuZeme se na mapa divat pomoci U-
-Matrix, ktera déva svétlé (neurony si jsou velmi podobné = shluk) a tmavé (data se prudce
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méni) hodnoty. Topologickou strukturu muzeme vytvorit tfeba vhodnou vzalenosti d neuronu
(a k nim brét i okoli).

Clusters Unified Distance Matrix Party BankruptcyAbusePreventi | BorderProtectionAntiterrari

[ .
1,00/ 0.00 1.00
PrivatePropertyRightsPret

0.06 1.00( 0.00
ProtectionofLawfulComme | ReallDAct IRead

o
1.00/{0.00 1.00;
BahrainFreeT || USAPATRIOTandTerroris

Obrazek 20: Kohenovy mapy.

8.2.4 RBF (radial basis function) sité

Skladaji se ze 3 vrstev — vstupni, skryta a vystupni. Jako aktivacni funkce pouzivaji radialni
bazové funkce (proto ten nazev). Snazi se prostor pokryt oblastmi vlivu (narozdil od MLP, kde

se déli primkou).
Obvykle se jednd o Gaussovu funkci:

p(z) = e Plo—cl?

4 N
Gaussova funkce pro riizné hodnoty 8
T T
1 {— =05 .
—pB=1.0
0.8 B8=20 N
06 s
K3
04
0.2 =
0 [ . - -
Il | Il
-2 -1 0 1 2
X
o J

Obrazek 21: Gaussova funkce.

Uceni takové sité zahrnuje: urceni stredt RBF ve skryté vrstvé, nastaveni vah mezi skrytou a
vystupni vrstvou. K uréeni stfedii se pouzivd bud’ k-means clustering nebo ndhodny vybér.
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8.3 Fuzzy regulatory

Ridici systém je soubor komponent, ktery ¥di chovani jiného systému nebo za¥izeni. Jeho
hlavnim tikolem je dosazeni nebo udrzeni pozadovaného stavu systému (napf. vykon). Piikladem
muze byt seqay robot, ktery reaguje na naklon (signily) a pomoci fuzzy logiky fikd motorum
jak maji regulovat vykon, aby seqway drzel rovnovahu a jel urcenym smérem. Touto konkrétni
¢asti se budeme zabyvat — controller a ten pro nas bude fuzzy regulator.

Fuzzy regulatory vyuzivaji fuzzy logiku. Takze muzeme pracovat s neurcitosti a pribliznymi
hodnotami.

Standardni fuzzy mnozina v universu U je zobrazeni
A:U —[0,1]

A(u) je stupen prislusnosti prvku u do mnoziny A.

Necht L = (L, <) je ¢astecné usporaddnd mnozina. Fuzzy mnozina v universu U je zobra-
zeni

A:U— L

kde a € L jsou stupné, A(u) stupen piilusnosti (¢im vétsi, tim vice tam prvek patii).

Podle toho jakou hodnotu mé A(u) tak tak moc tam w patfi (0 je nejménné a 1 nejvice).

S takovymito L-mnozinami muzeme provadét mnozinové operace jako standardné (zakreslime
to v grafu téch 2 ,funkei®).

T-norma na tplném svazu (L, <) je bindrni operace ® na L, kterd je asociativni, komuta-
tivni, monoténni a ma 1 jako neutralni prvek, t.j.

a® (b®c)=(a®b)®c
a®b=bR®a
a<b=a®c<b®c

a®l=a

vvvvvv

1. Lukasiewiczova
a®b=max(a+b—1,0)
2. Godelova
a® b= min(a,b)
3. Goguenova (souc¢inova)

a®b=a-b
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Lingvisticka proménna

Jde o proménnou, kterd nabyva lingvistickych hodnot (prosté slova). Ke kazdé lingvistické
hodnoté t je prirazena fuzzy mnozina A,, kterd mapuje lingvistické hodnoty na ¢iselné (fuzzy
hodnoty).

8.3.1 Baze pravidel

Obsahuje pravidla typu if-then, které fidi rozhodovaci proces. KAzdé pravidlo fika do délat v
jaké situaci. Jsou formulovana takto vstup = lingvistickd proménnd a vystup = akce, kterd ma
byt provedena. Napt. if z; is t;; and 7y ... then y is 0; (7 a y jsou lingvistické proménné a t,
o lingivistické termy).

Kazda pravidlo se da reprezentovat jako relace.

8.3.2 Fuzzy inferen¢ni mechanismus

Compositional Rule Inference (CRI) je technika pouzivana v tzv. systémech zalozenych na fuzzy
pravidlech, zakladnich soucastech fuzzy regulatorta. Ve fuzzy logice je toto pravidlo povazovano
za pravidlo odvozeni.

Necht' R je L-relace mezi X a Y , A je L-mnozina v X. L-mnozina B ziskand z A a R
pomoci CRI je definovana jako

B(y) = \/ A(z) ® R(z,y)

zeX

neboli B = AoR.

B(y) je stupen pravdivosti vyroku.

8.3.3 Defuzzifikace

Jde o proces vytvareni kvantifikovatelného vysledku v crisp logice (klasicka logika), jsou-li ddny
fuzzy mnoziny.

Tézisté (center of gravity nebo centroid) je metoda, kterd vypocitd ,tézisté“ fuzzy
mnoziny, které se pak da jako vystupni vysledek.

8.3.4 Takagi-Sugentv model

Kazdé pravidlo zde vede k vystupu, ktery je linedrni funkci vsSech vstupnich proménnych |,
nikoliv k fuzzy mnoziné. Takze tvar je: IF xq je t; ; and Ty je t; 5 THEN y = f(7q,75)

O univerzalni aproximacni schopnosti fuzzy regulatoru Theorem 27

8.3.5 Mambdaniho model

Velmi popularni model fuzzy inference. Umi pracovat s priorozenym jayzkem jak na vstupu, tak
na vystupu. Pouziva 2 metody, které ji odlisuji clipping a scaling. Prosté v grafu se urizne vrsek
pod né&jakou hodnotou « a zustane jen spodni ¢ast (lichobéznik), ktery se nasledné ,stlaci“,
aby si zachoval tvar, ale byl nizsi. Clipping je oproti scalingu vyrazné méné citlivéjsi (déla tupé
tvary).
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9 Tyden 09 - Evolucni algoritmy a aplikace algoritma v
praxi

o schéma (délka schématu, hodnota schématu )
o kiizeni

o generace

o preziti kiizeni

o selekce

Trida optimalizacnich metod inspirovanych principy biologické evoluce. Napft. genetické
algoritmy, evolucni strategie, genetické programovani, diferencidlni evoluce.

Nové nebo upravené vlastnosti jedince vznikaji pomoci 3 mechanismu, které slouzi i pro inspiraci
tvorby algoritmi:

e mutace

o krizeni

e prlirozeny vybér.
MiuzZeme to vyuzit pro feseni optimalizac¢nich problému tim, Ze udrzujeme populaci potencialnich
feSeni, na které iterativné provadime evoluci dokud nedosdhneme pozadovaného stavu.

9.1 Kroky a schéma evoluc¢niho algoritmu

1. Kédovani kandidatnich feseni. Populace je mnozinou kédu reprezentujici tato reseni.
Prakticky vse jde vzdy prevést na bindrni fetézec.

2. Pocatecni populace (bindrni fetézce) se obvykle generuje ndhodné.

3. Fitness funkce je funkce, ktera ohodnocuje dana feseni. Mtizeme chtit neco maximalizovat
nebo minimalizovat.

4. Genetické operatory provadi mutace ¢i kiizeni.

5. Je nutné definovat ukoncujici podminku, velikost populace, pravdépodobnost mutace,
fungovani krizeni atd.

Tohle schéma jde zapsat néjakym pseudokdédem nebo i graficky znazornit.

Prikladem muze byt hledani maxima funkce.

9.2 Tvorba nové generace
Déje se ve 3 krocich. Cim lepsi fetézec, tim vétsi Sance e pijde dél (logické).

Reprodukce — kopirovani fetézcu ze staré generace do nové. Treba pomoci vdZené rulety (ta
ale nepfinese nic nového a muzeme mit duplicity).

Krizeni — umozmi vyménit si informaci mezi fetézci. Pro kiizeni musime mit pravdépodobnost s
jakou probéhne. M4 destruktivni vliv na schémata (zavisi to hodné na pozicich). Delsi schémata
maji vétsi nachylnost ke ztraté pri kiizeni.

Mutace — obvykle ma velmi nizkou pravdépodobnost. Zavadi genetickou variabilitu do popu-
lace. Funguje tak, Ze prosté zméni bit v fetézci. Pravdépodobnost zmény je p,,,.
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9.3 Schéma

Néco jako Sablona kterda poposuje podmnozinu daného retézce. M4 stjenou délku jako ostatni
fetézce. Umozni analyzu a sledovani vlastnosti podmnozin.

Priklad schématu Priklad 29

Piiklad schématu **1*0010. Retézec 00100010 tam patii, 11100010 taky, ale 11001101 ne.

Pro schéma definujeme fitness v dané generaci. Je to prameér vsech fitness retézcl v generaci,
které odpovidaji danému schématu. Tim muzeme vysledovat jak které skupiny prispivaji ke
zlepSeni.

Muze dojit k problému kdy nékteré schéma ma velmi vysoké skére, ale zaroven je velmi neprav-
dépodobné, ze bychom z tohoto schématu ziskali ten nejlepsi retézec. Muselo by dojit k vhodné
mutaci. MiZze dojit k problému tzv. problém sousednich silngjch schémat, kdy jsou dvé schémata
velmi blizko sebe a maji vysoké skére, ale jsou Gplné opacnd (napr. @11xxxxx a 10@%**%*).
Dalsim problémem muze byt problém kriZeni rovnocengch schémat. Generace dospé€je do stavu
kdy jsou fetézce odpovidajici 2 schématiim rovnomérné zastoupeny (@11%%#%% a 10@%*¥%*).
Pokud tyto 2 Fetézce zkiizimé (zaméfujeme se na prvni 3 pozice) dojde k tomu, Ze potomci
budou slabsi. Z toho plyne, ze kiiZeni rovnocenych schémat vede ke snizeni kvality (zpomali
nebo zastavi pokrok k optimalnimu reseni).

Urcena pozice: pozice ve schématu, kde je 0 nebo 1
Délka schéamtu 0(H ): vzdalenost mezi prvni a posledni urc¢enou pozici
Rad schématu o(H): pocet uréenych pozic ve schématu

Resime otdzku preziti schématu v generaci. Jak se bdue ménit pocet retézci béhem jednoho
kroku. Méme schéma H, pocet Fetézcu v dané generaci po t-tém kroku je m(H,t) a populace
po t-tém kroku A(t). Snazime se zjistit m(H,t+ 1). Hlavnimi faktory pro ovlivnéni je selekce,
kiizeni a mutace.

Je dana vztahem

y
TR

kde f; je kvalita i-tého retézce a a suma je jejich soucet.

Po reprodukci z generace A(t) je tento pocet dan jako:

)
>

kde n je pocet Tetézcl v generaci, f(H) je primérna kvalita Tetézce v generaci H a f; je

m(H,t+1)=m(H,t)-n

soucet kvalit.

Prosté jak reprodukce ovlivni zachovani schématu.
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Prumérna kvalita retézce Definice 32

> [

n

f=

Pokud je kvalita nadprumérnéd bude fetézcu vice a naopak = reprodukce odtranuje postupné
schémata s podprumérnou kvalitou.

Muzeme spocitat i rychlost rustu schématu. Vznikd ndm tim vlastné geometrickd fada (coz je
exponencialni rust).
Pravdépodobnost ztraty schématu pri krizeni Definice 33

< —Z
Pa =7y

kde ¢ je délka Tetézce. Pravdépodobnost ze alespon jeden potomek odpovida schématu H
jel—mp,.

7 predchozich poznatki plyne, ze schéma s malou délkou a vysokou kvalitou maji nejvétsi
sanci k preziti.
Pravdépodobnost preziti schéamtu pri mutaci Definice 34
Pravdépodobnost Ze fetézec A bude po mutaci stale odpovidat schématu H je
H
bs = (1 _pm>0( )
Véta o schématech Theorem 35

Kratka, nadpiurmérnd schémata s nizkym fadem (pocet uréenych pozic) ziskévaji exponen-

cidlni narast poctu retézcu v nésledujicich generacich.

Schémata z predchozi véty se nazyvaji stavebni bloky a jsou zdkladem pro vytvareni kvalitnich
feSeni v genetickych algoritmech. Mohlo by se jednat o schéma *1%e* (pokud by mélo nadpru-
mérnou kvalitu).

9.4 Grayuv kod

Zajistuje ze 2 sousedni body v prohleddvaném prostoru se lisi pouze na jediné pozici. To
zménsuje riziko vyraznych zmén.

Prvni bit je stejny jako bit bindrniho ¢isla. Dalsi bit je XOR pfedchoziho bitu binarniho ¢isla
a prislusného bitu binarniho ¢isla.
Prevod cisla na Grayuv kéd Priklad 36

Cislo 1011. Prvni bit bude 1. Druhy bit bude 1@ 0 = 1. T¥eti bit bude 0 1 = 1. Ctvrty
bit bude 1 @ 1 = 0. Vysledek je 111e.

40



9.5 Elitarstvi

V evoluénim algoritmu muze dojit ke ztraté nalezeného maxima (které muze byt globalni).
Elitarstvi dokaze ochranit nejelepsi Fetézec dané generace, ze 100% prezije do dalsi bez ohledu
na vysledek rulety.

Prosté s uréit m nejlepsich fetézct (obvykle se jedna o jediny) v dané generaci, které nejsou
ovlivnény krizenim ani mutaci a automaticky prechézi dale.
9.6 Podobna kvalita a fitness scaling (Skalovani)

Kdyz jsou retézce v okoli maxima a maji podobnou kvalitu, algoritmus ztrati schopnost hledat
nejlepsi reseni. Musime vice do podrobna rozlisit mezi fetézci majici podobnou kvalitu. To
zajisti fitness scaling, ktery zvyrazni rozdily mezi podobnymi skore u retézcu.

Linearni skalovani

Pro kazdy retézec zajistime prepocet podle vztahu:
?max = Cmult ’ f avg

je obvykle ddno néco jako 1.2 nebo 2.0.

a=f.. - f max Cmult - f, avg
ave f max f avg

(Cmult - 1) ’ favg
fmax - favg

G

mult

b=

Prumérnd kvalita f, . by méla zustat zachovana, protoze zajistuje stabilitu pravdépodobnosti

avg
vybéru retézct. Takovy Tetézec ma pravdépodobnost vybéru P = %, kde n je pocet retézcu v

generaci.

Po gkalovani muzeme nékteré kvality dostat zadporné. To ma 2 moznosti feseni — neskélovat,
nebo upravit a a b, tak aby nejmin byla 0.

9.7 Problém 2-rukého (k-rukého) bandity
Slouzi pro vysvétleni pro¢ je exponencidunich narast v onéch specifickych schématech uzitecny.

Zadani problému. Mame stroj se 2 pakami. Po zatazeni za paku ziskdme priumérnou vyhru
(mq nebo m, — tyto hodnoty jsou nezndmé). Mdme N pokusu. Cilem je navrhnout strategii,
kterd maximulizuje celkovou vyhru.

Reseni. Pouziva se tzv. strategie prizkumu a exploatace. Na zacatku nevime, ktera paka je lepsi.
Rozdélime teda problém na 2 ¢asti, kde v prvni priazkumné pozorujeme, kterd paka doda lepsi
vysledky a v druhé ¢asti se soustfedime na lepsi paku, abychom maximalizovali zisk. Otazkou
je jak najit optimalni pocet pokusu /¢, ktery vénujeme které ¢asti. Jde pouzit tento vzorec

N —n* ~ +/81b* In(N?) - e

kde n* je podet pokusil na horsi pace, b je parametr souvisejici s rozptylem vyher péky, In(N?)
je zavilost na celkovém poc¢tu N pokust.
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9.7.1 Aplikace problému na genetické algoritmy

Geneticky algoritmus jde brat jako mnoho problému k-rukého bandity (jedno schéma = jedna

paka). Prumérna vyhra je jako kvalita schématu a pocet taht za paku je jako pocet Tfetézcu

daného schématu. Je zaddouci dosdhnout exponencidlniho narustu pokusu (u nejlepsich pék),

protoze potom to odpovida sifeni kvalitnich schémat.

10

Info ke zkousce

e Povoleni nahladnout do papirovych materidlu na 2 minuty.

¢ Nemeélo by se jednat o moc matiky.

e Asi né tak podrobné jako na prednasce, ale vic nez jen tplné povrchové.

Seznam témat ke zkousSce

1.
2.

© ©® N o o

10.
11.
12.

perceptron, funkce, geometricka interpretace, uceni, separabilni problémy, problém XOR

FFNN, architektura, vrstvy, aktiva¢ni funkce, véta o aproximaci, prehledové trénink,
kédovani vstupt a vystupt

. Backpropagation, v obecné architekture, ve vrstvenych sitich

Optimalizace gradientniho sestupu: momentum, NAG, adaptivni LR, Silva&Almeida,
DBD, Rprop, Adagrad, RMSProp, Adam (ne vSechno zardz, vyberu tfeba dvé z nich.

Zpracovani sekvenci: RNN, BP in time, LSTM, GRU

Attention mechanismy

Transformer, architektura, pozi¢ni kdédovani, residudlni spojeni

Konvoluéni sité, konvoluéni vrstvy a jejich hyperparametry, saliency maps
Generativni NN: AE, VAE, GANSs, difuzni modely

Fuzzy regulatory, baze pravidel, inference, Takagi-Sugeno model, Mambdaniho model.
Asociativni sité, Hopfieldova sit, SONN, Kohonenovy mapy, RBF sité

Genetické algoritmy
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