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1  Týden 01 - neuron a perceptron

22. září 2025

1.1  Turingův test

Něco jako myšlenkový experiment. AI testem projde pokud lidský tazatel není po položení 
několika otázek schopen říct zda písemné odpovědi pochází od člověka nebo od počítače. Úplný 
Turingův test pak vyžaduje interakci s předměty a lidmi v reálném světě.

Počítač musí umět: zpracování jazyka, reprezentaci znalostí, automatické uvažování, strojové 
učení.

1.2  Perceptron

Vychází z biologického modelu neuronu. Má několik vstupů a jeden výstup. Každý vstup má 
přiřazenou váhu, která určuje jeho důležitost. Také ma určen práh exitace (aktivace), který 
rozhodne zda-li se daný neuron na dané vstupy „aktivuje“.

Perceptron Definice 1

Jednoduchý perceptron je výpočetní jednotka s prahem 𝜃, která při přijetí 𝑛 vstupů 
𝑥1, 𝑥2, …, 𝑥𝑛 přes hrany s příslušnými vahami 𝑤1, 𝑤2, …, 𝑤𝑛 vydá 1 pokud platí následující:

∑
𝑛

𝑖=1
𝑤𝑖𝑥𝑖 ≥ 𝜃

a jinak 0.

Obrázek 1:  Perceptron.

Občas se −𝜃 označuje jako 𝑏 a říká se jí bias. Alternativně jde perceptron zapsat jako matema
tická funkce:

𝑓(𝑥) = {1 pokud 𝑤𝑇 ⋅ 𝑥 ≥ 𝜃
0 jinak

Funkce perceptronu je složená ze 2 matematických funkcí agregační funkce ℝ𝑛 → ℝ (což je 
vážený součet vstupních hodnot) a aktivační funkce ℝ → {0, 1} (což je schodková funkce – 
dobrý vědět jak vypadá graf). Práh exitace taktéž můžeme vnímat jako další vstupní váhu.

Příklad výpočtu je jednoduchý, prostě se vynásobí složky vektoru a váhy a udělá se součet, 
který se pro výsledek porovná s prahem exitace.
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1.2.1  Geometrická interpretace perceptronu

Pokud máme 2 vstupy 𝑥 a 𝑦, váhy 𝑎 a 𝑏 a 𝑐 = −𝜃, pak nám z nerovnice (ta kde byl předtím 
vektor a váhy) vypadne

𝑎𝑥 + 𝑏𝑦 + 𝑐 ≥ 0

neboli obecná rovnice poloroviny. Z toho plyne že neuron rozděluje rovinu přímkou (při 3 
vstupech by rozdělil prostor polorovinou). Tím rozděluje i body do kategorií. Vektor vah 𝑤 slouží 
jako určovač směru tohoto rozdělení, zatímco práh 𝑏 určí vzdálenost od počátku souřadnic. Z 
této geometrie plyne omezení, že perceptron může řešit jen lineárně separabilní problémy.

1.2.2  XOR problém

Pomocí jednoho perceptronu můžeme bez problému reprezentovat AND i OR (viz grafy), ale 
XOR (non-ekvivalence) a ekvivalence nejde.

Obrázek 2:  OR a XOR v grafu.

Lineárně separovatelné funkce Definice 2

Dvě množiny bodů 𝐴 a 𝐵 v 𝑛-rozměrném prostoru se nazývají lineárně separovatelné, 
pokud existuje 𝑛 + 1 reálných čísel 𝑤1, …, 𝑤𝑛+1 takových, že každý bod (𝑥1, …, 𝑥𝑛) v 𝐴 
splňuje

∑
𝑛

𝑖=1
𝑤𝑖𝑥𝑖 ≥ 𝑤𝑛+1

a každý bod (𝑥1, …, 𝑥𝑛) v 𝐵 splňuje

∑
𝑛

𝑖=1
𝑤𝑖𝑥𝑖 < 𝑤𝑛+1

Prostě se to dá rozdělit na ty 2 části přímkou a body musí ležet buď na jedné nebo druhé straně 
(proto ty znaménka nerovnosti).

Perceptron a XOR problém Poznámka 3

Perceptron může reprezentovat jen lineárně separovatelné funkce.

Řešení XOR problému je tedy použít více perceptronů a „zapojit“ je do sebe (vícevrstevné 
sítě). Stejné jak skládání logických funkcí pro XOR. V reálném světě problémy nejsou obvykle 
lineárně separabilní, ale mají šum. Tady pak nehledáme dokonalé oddělení, ale minimalizujeme 
chybu.
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1.3  Učení perceptronu

Máme nějaká trénovací data a na začátku náhodně perceptron volí váhy. Probíhá v iteracích. 
Pokud je výstup správný, tak se váhy nezmění, jinak ano.

𝑃  … pozitivní vzory (label 1)
𝑁  … negativní vzory (label 0)

Hledáme vektor 𝑤, který má kladný skalární součin se všemi rozšířenými vektory reprezento
vanými body v množině 𝑃  a záporný skalární součin s vektory v množině 𝑁 .

Pro ukázku se používají klasické logické funkce (příklady a ukázky v prezentaci 01 na slajdech 
60 a dál).

Co se může perceptron naučit Poznámka 4

Pokud jsou 𝑃  a 𝑁  lineárně separabilní, perceptron se Hebbovským učením naučí dokonala 
po konečném množství kroků.

1.4  Vícevrstvé neuronové sítě

Přechod k tzv. Multi-layer perceptrons umožnil řešit i neseparabilní úlohy. Organizace do vrstev 
je z praktických důvodů. Tyto vrstvy lze rozlišit do 3 základních kategorií: vstupní vrstva 
(vpodstatě ani není vrstvou perceptronů), skryté neurony a výstupní vrstva.
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2  Týden 02 - trénování vícevrstevných sítí

26. září 2025

2.1  Dopředná neuronová síť (FFNN)

Anglicky Feedforward Neural Network. Tuhle síť tedy dělíme do oněch 3 kategorií/vrstev. Jedná 
se o základní stavební kámen AI a strojového učení. Jedná se o jednosměrné sítě bez zpětné 
vazby. Každý skrytý uzel má danou aktivační funkci 𝑓 : ℝ → ℝ a hodnotu bias 𝑏.

Feedforwad Neural Network Definice 5

FFNN je orientovaný acyklický graf s ohodnocenými hranami, kde každý uzel je neuron a 
každá hrana je váhové spojení mezi neurony.

Obrázek 3:  Detailní pohled na FFNN.

Dohromady dá celou funkci 𝐹 , která vznikne skládáním 𝑓1, …. Je vyhodnocována v bodě 𝑥, 𝑦, 𝑧.

Jako aktivační funkce se používají různé funkce (jednoduchá je schodková funkce).

2.2  Trénování vícevrstvých sítí

Nutné 3 základní pojmy:

• Trénovací množina – sestává z 𝑝 dvojic ⟨𝑥𝑖, 𝑡𝑖⟩ (pro 𝑖 = 1, …, 𝑝) kde 𝑥𝑖 ∈ ℝ a  𝑡𝑖 ∈ ℝ𝑚

• Ztrátová funkce – vlastně metoda nejmenších čtverců definována jako:

𝐸 = 1
2

∑
1

𝑖=1
‖ 𝑜𝑖 − 𝑡𝑖‖2

• Gradientní sestup – tím hledáme minimum chyb sítě (pomocí derivací). „Hýbu se“ 
opačným směrem něž jde gradient, abych to zmenšil (gradient ukazuje směr největšího 
růstu funkce). Dobře je to vidět na příkladu [TBA z prezentace 02].

2.2.1  Výpočet gradientu

Gradient funkce je vektor skládající se z parciálních derivací funkce podle každé proměnné. 
Vzorec pro výpočet:
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∇𝑓 = ( 𝜕𝑓
𝜕𝑥1

, 𝜕𝑓
𝜕𝑥2

, …)

kde 𝜕𝑓 je parciální derivace (ta říká jak rychle se mění funkce pokud měníme pouze 1 
proměnnou).

Chceme aby funkce chyby sítě byla hladká a diferencovatelná.

Kvůli nevhodnosti původní aktivační funkce, která byla schodková a nevhodná (má bod, kde 
není derivace a všude jinde je 0), ji nahradíme sigmoidní funkcí1. V podstatě vyhladíme 
schodkovou funkci. Pokud bychom chtěli výstupy {−1, 1} místo {0, 1}, tak použijeme funkci 
signum, kterou když vyhladíme tak získáme hyperbolický tangens.

Aktivační funkce by nesmí být lineární, protože by to přineslo několik problémů:
1. Mohli bychom modelovat jen lineární funkce
2. [další důvody TBA]

Taky nesmí být polynomická, protože by byla omezená schopnost aproximovat složitější NN.

Funkce sigmoida: 𝜎(𝑥) = 1
1 + 𝑒−𝑥 ;  𝜎 : ℝ → (0, 1)

Obrázek 4:  Signum a její vyhlazení hyperbolický tangens.

Věta o univerzální aproximaci Theorem 6

Standardní dopředná neuronová síť s jedinou skrytou vrstvou obsahující konečný počet 
neuronů dokáže aproximovat (napodobit) jakoukoli spojitou funkci na kompaktních pod
množinách ℝ𝑛 s libovolnou přesností.

2.3  Backproagation algoritmus

Jedná se o algoritmus zpětného šíření, který umožňuje minimalizovat chybu a správně nastavit 
váhy v síti.

Pro použití backpropagation je nutné rozšířit síť, tak aby počítala chybovou funkci automaticky. 
To se udělá připojením všech 𝑗 výstupních uzlů na uzel vyhodnocující funkci 1

2(𝑜𝑖𝑗 − 𝑡𝑖𝑗)
2
 kde 

𝑜𝑖𝑗 a 𝑡𝑖𝑗 je 𝑗-tá komponenta výstupního vektoru. Tyto výstupy jsou sečteny a je vydán výstup 
𝐸𝑖 pro každý vzor 𝑡𝑖. To vše je pak sečteno a je vydána finální kvadratická chyba 𝐸. Tato síť 
tedy umí vypočítat celkovou chybu pro danou trénovací množinu.

1Dneska už se zase používá ReLU nebo softplus (cca od 2010)
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Jediné co v síti můžeme modifikovat jsou váhy. Chybu kterou dostváme označíme jako 𝐸. Jelikož 
𝐸 se počítá čistě jako složení funkcí jednotlivých uzlů, můžeme využít gradientní sestup k její 
minimalizaci. 𝐸 je spojitá a diferencovatelná funkce ℓ vah 𝑤1, 𝑤2, ….

Výpočet gradientu nutný k minimalizaci vypadá následovně (vlastně stejné jako předtím u 
funkcí):

∇𝐸 = ( 𝜕𝐸
𝜕𝑤1

, 𝜕𝐸
𝜕𝑤2

, …, 𝜕𝐸
𝜕𝑤𝑙

)

Každá váha je upravena inkrementem 𝛿𝑤𝑖 = −𝛾 𝜕𝐸
𝜕𝑤𝑖

 kde 𝑖 = 1, …, ℓ a 𝛾 je tzv. učící konstanta 
(udává něco jako velikost kroku).

Počet vstupních uzlů nemá vliv na fungování backpropagation. Funguje i při více korektně.

2.3.1  Fungování sítě

Funkce sítě je skládání funkcí, tedy řetězcové pravidlo. Každý uzel má teď 2 části. Grafický 
náčrt nazýváme jako B-diagram.

Obrázek 5:  Uzel se 2 částmi

Vyhodnocování sítě probíhá ve 2 krocích:
1. feed-forward krok: informace (vstup x) jde zleva a každý uzel vyhodnotí 𝑓 i 𝑓 ′, výsledky 

se v něm uloží a 𝑓 se posílá dál
2. backpropagation krok: síť běží pozpátku a používají se uložené hodnoty, vstupem na 

pravé straně je 1, příchozí informace k uzlu je doplněna a výsledek je vynásoben hodnotou 
uloženou v levé části

Výsledek který se shromáždí po backpropagation u vstupního uzlu je derivací síťové funkce 𝐹  
vzhledem ke vstupu 𝑥.

Obrázek 6:  Feed-forward krok v síti.

Backproagation Theorem 7

Backproagation správně počítá derivaci funkce sítě 𝐹  vzhledem ke vstupu 𝑥.
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Obrázek 7:  Backpropagation krok v síti.

V síti mohou nastat 3 případy navazování neuronů na sebe – skládání funkcí (1 neuron do 1), 
sčítání funkcí (2 neurony do 1) a váhové hrany. Práce s hodnotami v neuronech je přesně 
taková jako je název (sčítání = aplikujeme + a skládání = aplikujeme ⋅). U backpropagation je 
vstupem zprava 1.

Obrázek 8:  Feed-forward sčítání funkcí.
Obrázek 9:  Backproagation sčítání funkcí.

Theorem 8

Algoritmus backpropagation správně počítá derivaci funkce sítě 𝐹  vzhledem ke vstupu 𝑥. 
[Ve slajdech je i neúplný důkaz.]

Algoritmus korektně funguje i pro více než 1 vstupní uzel (nezávislé proměnné). U 2 proměnných 
má síť 2 argumenty a my můžeme počítat parciální derivaci vzhledem k 𝑥1 nebo 𝑥2. Při 
backpropagation kroku se síť rozdělí na 2 podsítě, pro každou proměnnou zvlášť.

2.4  Vrstvené FFNN

Vrstvená FFNN Definice 9

Vrstvená FFNN je taková, kde jsou uzly uspořádány do skrytých vrstev 𝐻1, 𝐻2, …, 𝐻𝑘.

Hrany ze všech vstupních uzlů vedou vždy do všech uzlů první skryté vrstvy 𝐻1. Poté vše z 𝐻1 
vede do 𝐻2. A z poslední vrstvy 𝐻𝑘 to tedy vede do výstupní vrstvy 𝑂 (jako output).
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Obrázek 10:  Síť se skrytými vrstvami.

,

2.4.1  Učení vrstvené FFN sítě

Po náhodném zvolení vah se použije backpropagation pro korekci. Algoritmus můžeme zapsat 
v těchto 4 krocích:

1. výpočet feed-forward (vzorce pro exitační hodnoty skrytých uzlů, dohromady tvoří matici)
2. backpropagation do výstupní vrstvy,
3. backpropagation do skryté vrstvy,
4. aktualizace vah.

Algoritmus skončí když je hodnota chybové funkce dostatečně nízká.

[Tady by se dal ještě každý ten krok hodně rozepsat (viz prezentace 02, slajdy 38 a dále)]

Pokud máme více než jeden tréninkový vzor používá se rozšířená síť pro samostatný výpočet 
chybové funkce pro každý z nich.

Zjednodušení aproximace Poznámka 10

Libovolnou funkci mohu aproximovat dostatečně velkou sítí s jedinou skrytou vrstvou.

2.5  Reziduální sítě (spojení)

Přístup k tvorbě velmi hlubokých NN, které nemají problém mizejících gradientů. Typicky se 
v hlubokých NN učí novou reprezentaci vrstvy 𝑖 nahrazením reprezentace ve vrstvě 𝑖 − 1. Tím 
pádem se každá vrstva musí naučit dělat něco užitečného nebo alespoň brát užitečné informace.

𝑜(𝑖) = 𝑓(𝑜(𝑖−1)) = 𝑔(𝑖)(𝑊 (𝑖)𝑜(𝑖−1))

Myšlenkou je že nová vrstva by měla předchozí reprezentaci jen narušit.

𝑜(𝑖) = 𝑔(𝑖)
𝑟 (𝑜(𝑖−1) + 𝑓(𝑜(𝑖−1)))

kde 𝑓 je rezidium (změna), která narušuje standardní chování přechodu 𝑖 − 1 na 𝑖. Pro výpočet 
rezidia se používá funkce, kterou je NN s jednou nelineární vrstvou kombinovaná s lineární 
vrstvou. Tímto dosáhneme, že reziduální sítě umožní spolehlivě učit výrazně hlubší NN.

𝑓(𝑜) = 𝑉 𝑔(Wo)
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kde 𝑉  a 𝑊  jsou naučené váhové matice.

Pokud by 𝑉 = 0 pak by prostě reziduál 𝑓 zmizel a vlastně by se jen nic nedělal a výstup by se 
předal dál jako by vrstva neexistovala.
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3  Týden 03 - pokračování o trénování

06. října 2025

3.1  Kódování vstupů

Obvykle je to přímočaré (takže 0 a 1). Většinou to jsou totiž vektory hodnot atributů. Odpovídá 
to prostě booleovským hodnotám.

Pokud se jedná o numerické atributy, tak se nechají v původní podobě, ale vhodně se upraví 
– škálování do rozsahu (třeba mezi 0 a 1), standardizace na nulový průměr, …. Pokud rostou 
exponenciálně namapují se na logaritmickou škálu.

Takže třeba obrázky (o rozměru 𝑋 × 𝑌 ) vnímáme jako pixely, což jsou prostě vektory složené 
z 3XY celočíselných atributů, kde každý pixel má tři hodnoty, protože RGB.

Kategorická data Poznámka 11

Kategorická data nevyjadřují číselnou hodnotu, ale příslušnost ke kategorii (např. barva 
očí).

Mapování kategorických data na číselné hodnoty používá metodu one-hot. Každá kategorie se 
zakóduje jako binární vektor, ve kterém je jedna hodnota rovna 1 a ostatní 0. Problém by mohl 
nastat při velkém počtu kategorií, jelikož by se stal neefektivní (tisíce a více unikátních hodnot). 
V tomto případě musíme použít jinou techniku, třeba embedding.

3.2  Ztrátové funkce

Při odvození gradientů jsem použili funkci s kvadratickou chybou viz Kapitola 2.2 , což není 
jediná možnost. Obvykle je lepší výstup interpretovat jako pravděpodobnost, např.

p(„negative“) = 0.1
p(„neutral“) = 0.2
p(„positive“) = 0.7

Chceme vysokou pravděpodobnost u správné třídy logicky.

Negativní logaritmus pravděpodobnosti správné třídy:

Loss = − log(𝑝( correct_class  ))

Loss = − log 𝑃𝑤(𝑡𝑗 | 𝑥𝑗)

Loss = − ∑
𝑁

𝑗=1
log 𝑃𝑤(𝑡𝑗 | 𝑥𝑗) ... pro 𝑁 příkladů

3.2.1  Křížová entropie (cross-entropy)

Značená jako 𝐻(𝑃 , 𝑄). Jde o druh míry odlišnosti mezi 2 rozděleními pravděpodobnosti 𝑃  a 𝑄 
(tedy skutečnou a modelem odhadovanou). Používá se tam kde model rozděluje data do tříd. 
Takže říká jak moc se model mýlí při určování (čím nižší tím lepší).

𝐻(𝑃 , 𝑄) = − ∑
𝑧

𝑃(𝑧) log 𝑄(𝑧)

Není to vzdálenost, neboť 𝐻(𝑃 , 𝑃) = 𝐻(𝑃) ≠ 0.
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3.3  Softmax vrstva

Převádí surové skóre (logity, značené 𝑥𝑖) na pravděpodobnosti tříd. Takže pro 𝑑 tříd potřebu
jeme 𝑑 výstupních uzlů, kde na každém máme pravděpodobnost pro danou třídu. Dohromady 
na všech 𝑑 uzlech je pak součet 1. Tuto pravděpodobnost pro třídu 𝑖 značíme 𝑦𝑖.

𝑦𝑖 = 𝑒𝑥𝑖

∑𝑑
𝑗=1 𝑒𝑥𝑗

Softmax je v podstatě zobecnění sigmoidy, protože ta převádí reálné číslo na hodnotu mezi 0 a 
1 a používáme ji u binární klasifikace (2 třídy). Pro 𝑑 = 2 by se softamx zredukoval na sigmoidu.

[Souvislost softmax a max]

3.4  Problém mizejících gradientů

Skryté vrstvy v NN obvykle používají méně aktivačních funkcí než se používá ve výstupních 
vrstvách. U ReLU a softplus se z pozorování věří, že pomáhají řešit problém mizejících gradientů.

Při trénování hlubokých NN (s mnoha vrstvami) se může stát, že gradienty jsou příliš malé, 
což způsobí zpomalení nebo zastavení učení v hlubších vrstvách. Proč? Při backpropagation 
gradienty klesají pro hluboké vrstvy exponenciálně (derivace aktivačních funkcí jsou mneší 
než 1). Což způsobí, že váhy v těchto vrstvách se neaktualizují efektivně. To se projeví na 
neschopnosti sítě zachytit složitější vzory.

3.5  Problém explodujících gradientů

Prostě gradienty naopak rostou moc agresivně a aktualizace vah se stává nekontrolovatelnou. 
Nastává v hlubokých nebo rekurentních NN.

Data dělíme na trénovací a testovací množinu (slouží přesně k tomu, co je v názvu). Testo
vací se snaží odhadnout generalizační chybu. Může vzniknout problém, že se na testovacích 
datech začnou objevovat veliké chyby, protože model ztrácí schopnost generalizace (tzv. early 
stopping point). Tam bychom to měli ukončit.

Hyperparametr … cokoliv co je potřeba nastavit při vzniku sítě

ReLU – Rectified linear unitDefinice 12

Používá se od 2010 jako aktivační funkce.

Φ(𝑥) = {0 pokud 𝑥 ≤ 0
𝑥 pokud 𝑥 > 0 = max(0, 𝑥)

Obrázek 11:  Graf ReLU funkce.

Poznámka 13

Aktivační funkce musí být nelineární. Jinak bychom mohli modelovat jen lineární funkce
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Věta o univerzální aproximaci Theorem 14

Neuronová síť s jednou skrytou vrstvou může aproximovat jakoukoli spojitou funkci na 
kompaktním množině s libovolnou přesností, pokud má dostatečný počet neuronů.

Další možnost je funkce softplus, což je hladká aproximace ReLU.

Leaky ReLU je modifikací ReLU, která umožňuje malé, ale nenulové gradienty i pro záporné 
vstupy. (Prostě ten graf jde od středu doleva hodně mírně do záporných hodnot).

Další pak: swish, Exponential Linear Unit.

3.6  Generalizace vs Memorizace

Generalizace … schopnost modelu se učit a aplikovat naučené věci na neviděná data. Model 
musí správně predikovat i na jiných než trénovacích datech.

Memorizace … model se učí přesně trénovací data bez snahy najít obecné vzory. Na trénovacích 
datech nízká chyba, na neviděných selhává. Bývá důsledkem přetrénování modelu (overfittingu).

Obrázek 12:  Znázornění overfitting, underfitting a right fit.

3.7  Rychlé trénování (optimalizace gradientního sestupu)

Proč? Klasický gradientní sestup je pomalý, citlivý na volbu learning rate, riziko uvíznutí v 
lokálním minimu.

Myšlenka pochází z fyziky a využití setrvačnosti pohybu (momentum) => využijeme aktuální 
gradient i ten z předchozího kroku.

Momentum Definice 15

Vzorec pro momentum (vektor rychlosti a aktualizace vah):

𝑣𝑡 = 𝛼 𝑣𝑡−1 − 𝜂∇𝐸(𝑤𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 + 𝑣𝑡

𝜂 … learning rate, 𝛼 … parametr momenta (obvykle 0.9), ∇𝐸 je gradient,

Nevýhodou je, že musíme ladit 2 parametry.
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3.7.1  Nesterov Accelerated Gradient (NAG)

Modifikace momenta. Gradient se nepočítá v aktuálním bodě, ale v bodě předpovězeném 
momentem. Lepší směrová informace a rychlejší sestup (rychlejší reakce na změnu).

𝑣𝑡 = 𝛼 𝑣𝑡−1 − 𝜂∇𝐸(𝑤𝑡−1 + 𝛼 𝑣𝑡−1)

𝑤𝑡 = 𝑤𝑡−1 + 𝑣𝑡

[K tomuto jsou různé ilustrace v prezentacích lec03.pdf okolo slajdu 40]

3.7.2  Aktivní výběr trénovacích dat

Nemusíme trénovací vzory používat rovnoměrně, ale používáme, ty které přináší největší chybu. 
V praxi se používá spíše doplňkově.

3.8  Adaptivní algoritmy pro learning rate

Je to technika, kdy každá váha dostává vlastní learning rate. Protože jedno globální 𝜂 může 
vést k malým nebo naopak moc velkým změnám v různých směrech.

3.8.1  Newtonova metoda

Slouží k hledání minima chybové funkce 𝐸(𝑤). Bere v úvahu i zakřivení označované jako Hessian 
(je to matice druhých derivací; rozdíl oproti gradient descent). To dá rychlejší konvergenci a 
méně oscilací. Ale je nutný jeho výpočet, který trvá 𝑂(𝑛3), což je nepraktické pro velké NN. 
Metoda se používá se jen v některých úpravách (ne čistá).

3.8.2  Silva & Almeida’s algoritmus

Slouží ke zrychlení učení bez výpočtu Hessianu (zakřivení funkce, tzn. jak se mění gradient). 
Každá váha 𝑤𝑖 má vlastní learning rate 𝜂𝑖 a sleduje se její gradient 𝑔𝑡

𝑖 = 𝜕𝐸
𝜕𝑤𝑖

. Jednodušší než 
Newtonova metoda, ale je podobná.

Idea: využívá informace o druhé derivaci (což je zakřivení). Gradient je stabilní ⇒ krok lze 
zvětšit; nebo gradient mění znaménko ⇒ krok se zmenší.

𝜂𝑡+1
𝑖 =

{

𝑛𝑡

𝑖 ⋅ 𝑢  pokud 𝑔𝑡
𝑖 ⋅ 𝑔𝑡−1

𝑖 > 0
𝑛𝑡

𝑖 ⋅ 𝑑  pokud 𝑔𝑡
𝑖 ⋅ 𝑔𝑡−1

𝑖 < 0
𝑛𝑡

𝑖      jinak

𝑢 > 1 … zvětšení kroku
𝑑 < 1 … zmenšení kroku

3.8.3  Delta-bar-delat (DBD)

Má za cíl adaptovat váhovou učící rychlost 𝛾 s menšími oscilacemi než Silva & Almeida. Pokud 
se znaménko gradientu pro váhu dlouhodobě nemění, znamená to, že jdeme správným směrem 
⇒ zvýšíme learning rate (𝛾 = 𝛾 + 𝑢, kde 𝑢 > 0). Pokud by došlo k neshodě rázně se krok zmenší 
(𝛾 = 𝛾 ⋅ 𝑑, kde 0 < 𝑑 < 1).

Přidává nový hyperparametr 𝜃 tzv. hladicí konstanta (nutnost zvolit), která říká jak velkou 
váhu přiřazujeme gradientům z minulosti.

𝑔𝑖 = (1 − 𝜃) ⋅ 𝑔𝑖 + 𝜃 ⋅ 𝑔𝑖−1

Je pro ni uveden i pseudokód v prezentacích (slajd 55 v lec03).
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3.8.4  Resilent backpropagation (Rprop)

Ignoruje velikost gradientu a řídí se pouze jeho znaménkem (velikost posunu určí právě adap
tivní krok). Změna váhy je pevná, tedy nezávisí na velikosti gradientu. Stejné znaménko jako 
předtím ⇒ zvýšíme krok Δ𝑖, opačné znaménko ⇒ snížíme krok a pokud je gradient = 0, tak s 
váhou nehýbeme. Pokud krokem přeskočíme minimum, využijeme rollback, který se vrátí před 
poslední update vah a aktuální gradient se nastaví na 0. Je odolný vůči mizejícím i explodujícím 
gradientům (kvůli ignoraci velikosti).

Δ𝑤(𝑘)
𝑖 =

{


−Δ𝑖 pokud 𝑔(𝑘)

𝑖 > 0
+Δ𝑖 pokud 𝑔(𝑘)

𝑖 < 0
0      jinak

3.8.5  AdaGrad

Upravuje learning rate na základě toho jak často se mění gradient (řídí se tedy jeho historií) 
zvlášť pro každý parametr. Vhodný pro řídká data (např. NLP). Akumulace 𝑠 (suma čtverců 
historických gradientů)

𝑔𝑡 = ∇𝑤𝐸𝑡(𝑤𝑡)

𝑠𝑡 = 𝑠𝑡−1 + 𝑔𝑡 ⊙ 𝑔𝑡

a ta se pak použije v adaptivní úpravě

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 𝑔𝑡√𝑠𝑡 + 𝜀

kde ⊙ je násobení po souřadnicích, 𝜀 slouží pro stabilitu (obvykle velmi velmi malé) a 𝑔 jsou 
gradienty vzorku.

Kroky jsou kratší tam kde je historicky velká derivace (strmé místo), naopak jsou delší tam kde 
je derivace nízká (křivka plochá nebo neaktivní).

Má více variant – Diagonální AdaGrad, Plno-maticový AdaGrad. U nestacionárních úloh2 může 
učení zvadnout (přestane se učit), protože 𝑠𝑡 pořád roste a tím pádem 𝜂√𝑠𝑡

 stále klesá.

3.8.6  RMSProp

Nástupce AdaGrad. On místo kumulace používá exponenciální klouzavý průměr (něco jako 
pomalé zapomínání starých gradientů)

𝑠𝑡 = 𝜌𝑠𝑡−1 + (1 − 𝜌)𝑔𝑡 ⊙ 𝑔𝑡

kde 𝜌 je decay rate (okolo 0.9). Algoritmus díky tomu zůstává aktivní i po dlouhém čase. Přidává 
ale nový hyperparametr 𝜌.

3.8.7  Adam

Spojení RMSProp a momenta. Tím pádem kombinuje směr i měřítko. Dobře funguje už de
faultně nastavený. Často používaný v deep learningu. Má dost hyperparametrů. Má 2 momenty:

• 𝑚𝑡 momentum (průměr) – vyhladí krátkodobý šum v gradientu
• 𝑣𝑡 momentum (rozptyl) – jako RMSProp

tedy škáluje kroky podle variability gradientu.

2Nestacionární úloha je taková, kde se pravidla hry mění v průběhu času.
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𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − Β1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − Β2)𝑔𝑡 ⊙ 𝑔𝑡

kde 𝛽 jsou hyperparametry určující rychlost exponenciálního zapomínání.

4  Týden 04 - Rekurentní neuronové sítě

13. října 2025

Jsou to dohromady 4 prezentace, otázka co z toho přesně vybrat.
1. Prezentace ze dne AI – podle mě ta není tak podstatná
2. Rekurentní NN
3. LLM pro poučené uživatele
4. Transformer

4.1  Rekurentní NN (RNN)

Poměrně dost dat má sekvenční povahu (čili pořadí hraje roli) – text, zvuk, časová řada, video. 
Na těchto datech běžné NN selhávají. RNN mají tu výhodu, že můžou modelovat závislosti 
mezi sekvencemi a mají schopnost pamatovat si minulost (skryté stavy ℎ𝑡).

ℎ𝑡 = 𝑓(𝑊ℎℎ ⋅ ℎ𝑡−1 + 𝑊𝑥ℎ ⋅ 𝑥𝑡)

kde 𝑥𝑡 je vstup na časovém kroku 𝑡 a ℎ𝑡−1 je skrytý stav předchozího kroku.

Používají se při strojovém překladu, rozpoznání řeči, generování textu, …

Mají opakovanou strukturu (tedy obsahují smyčky), což umožňuje si informace ukládat a 
tím pádem ta informace přetrvá v čase. Představa viz obrázek.

Obrázek 13:  RNN se skrytým stavem.

4.1.1  Backproagationt through time (BPTT)

Aktualizace vah musí proběhnout přes časové kroky (RNN jsou model s pamětí).

Postup:
1. Výpočet feed-forward přes celou časovou sekvenci
2. Rozložení chyby v čase a zpětná propagace na každý časový krok
3. Aktualizace vah na základě gradientů chyby kumulované z různých časových kroků
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Opět mohou nastat klasické problémy jako mizející nebo explodující gradienty. Řeší se pomocí 
pokročilejších architektur LSTM (long short-term memory) a GRU (Gated Reccurent Units) 
je zjednodušený LSTM.

4.1.2  Long Short-Term Memory (LSTM)

LSTM je speciální typ RNN, který dokáže uchovávat informace po velmi dlouhou dobu. 
Jde o speciální paměťovou buňku. Buňka má několik bran (gates) – forget gate (co se má 
zapomenout), input gate (které nové informace se uloží) a output gate (co z buňky se použije 
jako výstup). [Je k tomu poměrně komplikovaný obrázek v prezentaci]. Vhodnějš pro složitější 
závislosti.

Hadamardův součin Definice 16

Prvkový součin 2 matic (vektorů) o stejné velikosti. Násobí se vždy sobě si odpovídající 
prvky. (𝐴 × 𝐵)𝑖,𝑗 = 𝐴𝑖,𝑗 ⋅ 𝐵𝑖,𝑗

Používá se k aplikaci bran na jednotlivé složky vektorů. Tím se nezávislé aktualizují 
jednotlivé složky vektorů.

Důležitá je u něj asi i derivace.

Forget gate 𝑓𝑡 rozhoduje co se má zapomenout. Jde o vektor hodnot 0 až 1. Pokud se 𝑓𝑡 blíží 
nule informace jsou téměř zapomenuty.

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

Input gate rozhoduje o přidání nových informací. Má dvě složky 𝑖𝑡, která určuje jaké hodnoty 
se aktualizují a 𝑐𝑡, což jsou nové potencionálně uložitelné informace.

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑐𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

Output gate rozhoduje co bude na výstupu v daném časovém kroku. Kde 𝑜𝑡 rozhoduje o 
výstupu a ℎ𝑡 je skrytý stav pro další časový krok.

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)

Aktualizace paměti pro celý LSTM pak probíhá následovně

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐𝑡

kdy 𝑓𝑡 určuje kolik staré paměti se zapomene a 𝑖𝑡 kolik nové se přidá (𝑐 jsou tedy informace).

4.1.3  Grated Recurrent Unit (GRU)

Oproti LSTM má méně parametrů a pouze 2 brány (reset a update). Použijeme pokud máme 
omezený výkon, ale potřebujeme efektivní práci s dlouhodobými znalostmi. Skrytý stav a paměť 
je spojena do jednoho vektoru.

Skrytý stav ℎ𝑡 je kombinací nového a starého stavu.

Reset Gate 𝑟𝑡 rozhoduje jak moc se má předchozí skrytý stav zapomenout.

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)
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Update Gate 𝑧𝑡 naopak říká jak moc se má skrytý stav aktualizovat o nové informace.

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)

Aktualizace skrytého stavu:

ℎ𝑡 = 𝑧𝑡 ⋅ ℎ𝑡−1 + (1 − 𝑧𝑡) ⋅ ℎ̃𝑡

Starý stav se vždy kombinuje s novým kandidátním stavem ℎ̃𝑡.

4.2  Bidirectional RNN (BiRNN)

Oproti běžným RNN se zde zpracovávájí data oběma směry (budoucnost → minulost i minulost 
→ budoucnost). Někdy mohou i informace z budoucnsoti ovlivnit současný časový krok (třeba 
zpracování přirozeného jazyka). Funguje prostě tak, že je rozdělená na 2 samostatné modely 
Forward RNN (zpracování od 𝑡1 po 𝑡𝑛) a Backward RNN (zpracování od 𝑡𝑛 až po 𝑡1). Výstupy 
se následně spojí a poskytnou úplný kontext ℎ𝑡 = [ℎ⃗𝑡, ℎ⃖𝑡].

4.3  Seq2Seq modely

Zabývají se problémy, kde se má převést jedna sekvence na druhou (překlad, shrnutí textu). 
Takže se musí model naučit mapovat vstupní sekvenci na výstupní. Obvykle využívá dvě RNN 
(encoder – zpracuje vstupní sekvenci a decoder – generuje výstup na základě enkodéru).

Obrázek 14:  Architektura seq2seq modelu.

Postup se dá rozdělit do 3 kroků:
1. Vstupní sekvence je zpracována encodérem – 𝑥1, 𝑥2, …, 𝑥𝑛 na ℎ1, ℎ2, …, ℎ𝑛
2. Kód je poslední skrytý stav ℎ𝑛 reprezentující celou vstupní sekvenci
3. Dekodér generuje výstup 𝑦1, 𝑦2, …, 𝑦𝑚. Generování výstupu je postupné, protože každý 

krok závisí na předchozím výstupu.

Při dlouhých sekvencích ztrácí jednoduchý seq2seq model informace, protože se vše komprimuje 
do jednoho fixního vektoru. Mohou se také akumulovat chyby kvůli postupné návaznosti na 
vše předchozí. Attention mechanismus umožní modelu se zaměřit na různé části vstupní 
sekvence při generování každého výstupního kroku.

4.4  Atention mechanismy

Při každém kroku generování výstupu model zváží důležitost každého prvku ve vstupní sekvenci. 
Váhy (attention) 𝛼 jsou určeny na základě podobnosti skrytých stavů decoderu 𝑠𝑡 a encoderu 
ℎ𝑖. Výstup je pak vážená kombinace všech skrytých stavů encoderu.
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𝑐𝑡 = ∑
𝑛

𝑖=1
𝛼𝑡,𝑖 ⋅ ℎ𝑖

Podobnost mezi akrytými stavy 𝑠𝑡 a ℎ𝑖 odhaduje tzv. score function

score(𝑠𝑡, ℎ𝑖) = 𝑠𝑇
𝑡 𝑊ℎ𝑖

Normalizace probíhá pomocí softmax, aby se jednalo o pravděpodobnostní rozdělení

𝛼𝑡,𝑖 = 𝑒score(𝑠𝑡,ℎ𝑖)

∑𝑛
𝑘=1 𝑒score(𝑠𝑡,ℎ𝑘)

Podle typu score function, pak nazýváme celý mechanismus. Tyto mechanismy se liší způsobem 
výpočtu skóre mezi dotazem (Query 𝑄) a klíčem (Key 𝐾).

Query Q je dotaz reprezentující aktuální prvek v dekodéru, kterým chceme najít relevantní 
část vstupní sekvence. Každý prvek vytváří svůj vlastní dotaz 𝑄.

Key 𝐾 je vektor reprezentující každý prvek ve vstupní sekvenc a popisujícíc jeho charakteri
stiky. Dotaz 𝑄 se porovná s klíči 𝐾, aby určil jaký prvek je pro dotaz důležitý.

Value 𝑉  je vektor nesoucí skutečnou informaci, kterou chceme použít pro výstup. Výsledek v 
daném časovém kroku je průměr hodnot, kde váhy určuje dotaz a klíč.

• Dot-product Attention:

score = 𝑠𝑇
𝑡 ⋅ ℎ𝑖

• Bilinear Attention:

score = 𝑠𝑇
𝑡 ⋅ 𝑊ℎ𝑖

• MLP (multi-layer perceptron) Attention:

score = 𝑠𝑇
𝑎 tanh(𝑊𝑎[𝑠𝑡; ℎ𝑖])

4.4.1  Bahdanau attention mechanismus

Byl představen v článku. Architektura zahrnuje BiRNN (skryté stavy z obou směrů se spojí pro 
lepší zachycení kontextu). Attention skóre se počítá pomocí vícevrstvého perceptronu (MLP). 
Attention mechanismus se aplikuje mezi jednotlivými kroky dekodéru.

4.4.2  Luong attention mechanismus

Opět představen v článku. Používá jednodušší jednosměrnou RNN, attention skóre se vypočí
tává pomocí bilineární funkce (založena na skalárním součinu stavu dekodéru a enkodéru). 
Attention se aplikuje po každém kroku dekodéru a stav 𝑠𝑡 se používá k výpočtu výstupu 𝑐𝑡.

4.4.3  Multi-head attention mechanismus

Rozšíření standardního attention, které se využívá v transformerech. Provádí se několik výpočtů 
paralelně. Kdy každý výpočet (hlava) má vlastní váhy pro dotazy, klíče a hodnoty (tím umí 
zachytit různé aspekty).

Matice 𝑊𝑂 slouží ke shrnutí všech hlav do jediného výstupu (ten pokračuje do dalších vrstev 
modelu).

Výpočet probíhá pomocí škálovaného součtu podobností:
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Attention(𝑄, 𝐾, 𝑉 ) = softmax(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

kde 𝑑𝑘 je dimenze klíče 𝐾. Díky tomu může každý prvek v dekodéru věnovat větší pozornost 
relevantním částem vstupu na základě vypočtených vah.
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5  Týden 05 - Transformer

Jedná se o model pro strojový překlad. Skládá se ze 2 hlavních komponent – enkodéru a dekodéru. 
Oproti RNN vidí celou sekvenci najednou, nikoliv jako zpracování jedné části po druhé.

Obrázek 15:  Architektura Transformer modelu.

5.1  Tokenizace

Proces při kterém se text dělí na menší části tzv. tokeny (to může celé slovo, část slova subword 
nebo jen znak). Převod na tento formát má umožňuje textu porozumět modelům na zpracování 
přirozeného jazyka (NLP).

5.2  Word embedding (WE)

Reprezentace slov jako hustých vektorů v nízkoúrovňovém prostoru. Zachytí sémantická a 
syntaktické vztahy. Podobná slova ⇒ podobné vektory. Zlepší výkon NLP oproti třeba one-hot 
encoding. Tady v té oblasti se angažoval Tomáš Mikolov.

5.2.1  Word2Vec

Naučit vektory slov podle kontextu v textu. Sémantický vztah bere jako vektorovou aritmetiku 
(king - man + woman ≈ queen). Má nízkou dimenzionalitou (100-300 cca). Trénováno na velkých 
korpusech textu. Modely jako BERT nebo GPT jsou na tomto postaveny.

Někdy se používají 2 embeddingy. Třeba když se jedná o překlad a jsou rozdílné slovníky 
pro vstup a výstup. Nevýhodou je vyšší počet parametrů nebo nepřenositelnost naučených 
reprezentací mezi vstupem a výstupem.
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Poznámka 17

GPT má sdílený emdebbing.

5.2.2  Skip-Gram

Předpovídá kontextová slova na základě daného slova.

5.2.3  Continous Bag of Word (CBOW)

Předpovídá dané slovo na základě jeho kontextu.

5.3  Paralelní zpracování v Transfomeru

Vstup do enkodéru je zpracován celý najednou. Lze to snadno paralelizovat na GPU, umožňuje 
delší kontext a má rychlejší trénink. Enkodér i dekodér se skládá z více identických bloků, jimiž 
prochází vstupní věta (poslední pak tvoří výstup).

Obrázek 16:  Postup enkodéru a dekodéru v Transformeru.

5.4  Poziční kódování (PE)

Transfomer používá u enkodér-dekodéru mechanismy pozornosti bez rekurence. Pokud by se 
ale používal pouze attention mohlo by dojít k přiřazení stejné sémantiky různým větám (např. 
„Tom bite a dog.“ a „A dog bite Tom“). Proto se přidalo poziční kódování.

Kontatencace vektorů umožňuje modelu vidět poziční kódování nezávisle na word embeddingu. 
Poziční kódování nevyžaduje stejnou dimenzi jako word embedding. Často se používá funkce 
sin nebo cos.

Pozice (pos) je číslo 0 až maximálně definovaný počet tokenů ve větě. Pokud je max lenght = 
128 a 𝑑model = 512 pak pro každou dvojici prvků embeddingu

pos
(10 000) 2𝑖

512

pro 𝑖 = 0…𝑑model
2 − 1 = 255
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PE(pos, 2) = sin( pos
10000 2

512
)

PE(pos, 3) = cos( pos
10000 2

512
)

PE(pos, 4) = sin( pos
10000 0

512
)

PE(pos, 5) = cos( pos
10000 0

512
)

⋮

Může se přecházet na relativní pozice (což je lineární operace). Toho se využívá při attention 
mechanismech, kde model musí určit jak daleko od sebe jsou jednotlivé pozice (pro korektní 
přiřazení vah).

sin(𝑎 + 𝑏) = sin(𝑎) cos(𝑏) + cos(𝑎) sin(𝑏)

cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) − sin(𝑎) sin(𝑏)

5.5  Self Attention

Má zvážit vztah mezi všemi slovy ve větě a vyrtvořit kontextově závislé reprezentace.

Klíče (keys) 𝐾, dotazy (queries) 𝑄, hodnoty (values) 𝑉 . Do těchto 3 vektorů je transformováno 
každé slovo pomocí lineárních projekcí.
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6  Týden 06 - Konvoluční neuronové sítě (CCN)

27. října 2025

6.1  Co jsou konvoluční sítě?

Speciální typ hluboké (čili více než 1 skrytá vrstva) neuronové sítě. Měly by efektivně zpraco
vávat data s prostorovou strukturou (videa, obrázky, časové řady, …). Měly by z takových 
dat extrahovat vlastnosti (hierarchické rysy) a ušetřit to mít mnoho vstupních parametrů.

Z obrázků by se totiž neměl dělat lineární vektor, který se použije ve FFNN (problémy: vysoký 
počet parametrů, paměťová náročnost, riziko přeučení, ignorují se lokální vlastnosti).

6.2  Složení CCN

6.2.1  Konvoluce

Konvoluce je matermatická operace. Posouvá malé jádro po celém vstupu. Jádrem je malá 
matice (třeba 3 × 3). Ta se učí detekovat lokální rys – hrana, textura, roh.

Obrázek 17:  Konvoluční filtr.

Filtr udělá s vybranou částí skalární součin a výstupem je feature map.

Hlavní hyperparametry které musíme určit – velikost filtru 𝐹  (rozměr jádra), stride 𝑆 (krok 
posunutí), padding 𝑃  (výplň okrajů nulami), počet filtrů 𝐾 (hloubka výstupu).

Výpočetní výstupní dimenze (𝑊out) jsou nové rozměry po konvoluci (předpokládáme čtver
cové matice):

𝑊out = 𝑊in − 𝐹 + 2𝑃
𝑆

+ 1

Detaily derivace v konvoluci: není až tak podstatné, spíše vědět přehledově z prezentace.

1. Výpočet gradientu vah
2. Propagace gradientu vstupu

6.2.2  Pooling vrstva

Slouží k provedení redukci dimenze (downsampling). Takže výrazně sníží prostorovou velikost a 
pomáhá s translační tolerancí (schopnost rozpoznat objekt bez ohledu na jeho posunutí). Vrstva 
se neučí (nemá žádné váhy). Existují 2 typy – max pooling (častější) a average pooling.

Má 2 hyperparametry:
• velikost okna (pool size) 𝐹
• krok (stride) 𝑆
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Max pooling. U max poolingu se při FF v každém okně vybírá maximální hodnota (něco jako 
„Byl daný rys přítomen v této oblasti?“), takže dobře dokáže detekovat daný rys a odfiltrovat 
šum. Při backpropagation se chová jako přepínač – z vyšší vrstvy se šíří pouze do té pozice, 
které nesla nejvyšší hodnotu, jinde je 0 gradient.

Average pooling. U average poolingu se při FF vypočítá průměr a dochází spíše k vyhlazení 
dané oblasti. Používá se převážně v posledních vrstvách. Při backpropagation se chová jako 
distributor – čili gradient se rovnoměrně rozdělí přes všechny pozice (např. při okně 2×2 každá 
pozice obdrží 1

4  gradientu).

Detaily derivace v pooling vrstvách: TBA.

6.3  Architektura LeNet-5

První komplentní implementace architektury CNN. Měla 5 učitelných vrstev. subsampling = 
pooling

6.4  Architektura AlexNet

První hluboká CCN (8 vrstev) ve větším měřítku. Použiváli ReLu (výrazné zrychlení). Použití 
Dropout pro prevenci přeučení.

6.5  Architektura ResNet

ResNet zavedl tzv. residual blocks (ty umožňují zkratku/přeskočení některých vrstev), který 
umožnil satbilní trénink sítí se stovkami vrstev.

6.6  Technika Dropout

Brání přeučení. Regularizační technika pro FFNN. Při každé iteraci tréninku (jak feed-forward 
tak backpropagation) se náhodně vypne určité procento neuronů (obvykle 50 %). Tím pádem 
se síť „nemůže spolehnout“ na určitou skupinu neuronů. Síť pak funguje jako trénink mnoha 
menších řídkých sítí sdílejících váhy.

Clever Hans efekt Poznámka 18

Nastane pokud se model naučí chybnou korelaci místo skutečného rysu. Např. vlci a psi 
husky – vstupem byli fotky vlků na sněhu, pokud síť dostala obrázek huskyho na sněhu 
označila ho chybně za vlka, protože rozlišovala podle pozadí (tedy sněhu).

6.7  Architektura GoogleNet

GoogleNet používá sady různě velkých filtrů, nikoliv jen jeden. Velmi hluboká síť s menším 
počtem parametrů. Kromě zvyšování hloubky sítě přistoupili i k jejímu rozšíření do šířky. Přidali 
Inception modul, který provádí všechny konvoluce paralelně najednou. Využili global average 
pooling k rapidnímu snížení parametrů. Už to nebyl jen lineární stoh vrstev, ale složitější graf.

6.8  Vizualizace a interpretace

6.8.1  Saliency map (mapa důležitosti)

Má určit citlivost výstupního skóre 𝑆𝑐 vzhledem ke změně vstupního pixelu 𝑋. Matematickým 
základem je analýza citlivosti – gradient skóre cílové třídy 𝑐.
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𝑀 = | 𝜕𝑆𝑐(𝑋)
𝜕𝑋

|

Vizualiazce pomocí heatmap gradientů (vyšší hodnota = důležitější). Velmi rychlá metoda, 
která odhalí zkreslení. Prostě jako teplotní mapa překryje obrázek.

Výpočeet gradientu 𝜕𝑆𝑐
𝜕𝑋  se získá provedením backpropagation s jedničkovým gradientem na 

výstupu cílové třídy 𝑐.
1. Dopředný průchod vypočítá 𝑆𝑐
2. Nastaví se gradient 𝜕𝑆𝑐

𝜕𝑆𝑐
 na 1.0

3. Gradient se zpětně šíří až na výstupní vrstvu 𝑋
4. Vizualizace pomocí matice (mapy) 𝑀

6.8.2  Grad-CAM

Oproti saliency map vytváří „hrubší“ bitmapu s vysokou lokalizací ukazující jaké regiony vstupu 
ovlivnili finální rozhodnutí. Využívá výstup z poslední konvoluční vrstvy.

6.9  Povídání o cvičení

V prezentacích něco jak pracovat s Pythonem a těmi nejznámějšími knihovnami. Nevím proč 
je to zmíněný až v půlce semestru.
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7  Týden 07 - Generativní a diskriminační modely

03. listopadu 2025

Generativní modely generují nové příklady na základě vzorů ve vstupních datech. Výzvou 
je model naučit efektivní zachycení vzorů na původních datech. Na vstupních datech se naučí 
rozdělení a podle toho vytváří vzory, které tomu rozdělení odpovídají.

Diskriminační modely rozlišují mezi třídami (kategoriemi) v datech.

7.1  Autoencodery (AE)

Jedná se o neuronovou síť, která se učí komprimovat vstupní data do nižší reprezentace a poté 
je konstruovat zpět. Cílem je naučit model kódovat klíčová informace a odstranit redundantní 
data. AE mají několik použití – redukce dimenzionality (komprimace na menší počet rysů, např. 
pro předzpracování), odstranění šumu či generování nových dat (např. VAE mohou generovat 
nové realistické vzorky dat). Jsou to takový ty příklady co jsme dělali na AKTI, kde se generovali 
číslice na obrázku asi 16 × 16 pixelů.

AE není vhodný jako generátor. Potřebujeme VAE (Variational Autoencoder), který má 
latentní prostor plynulý a smysluplně uspořádaný. Nevhodnost je z několika důvodů:

1. Netrénuje latentní prostor, aby byl spojitý nebo homogenní (takže tam vznikají prádná 
místa)

2. Dekodér často může generovat šum, protože nemá naučenou distribuci dat v prostoru

Dělí se na 2 části – enkodér (převádí vstup do komprimované reprezentace) a dekodér (rekonst
ruuje původní vstupní data z oné komprimované reprezentace). Enkodér počítá deterministickou 
funkci 𝑞Φ(𝑧|𝑥), která zobrazí vstupní data 𝑥 na jediný latentní vektor 𝘻 . Dekodér zase naopak 
počítá funkci 𝑝𝜃(𝑥|𝑧), která rekonstruuje původní vstupní prostor z latentního vektoru 𝘻

Obrázek 18: Enkodér a dekodér v AE.

Úzká skrytá vrstva 𝑧 uprostřed nutí NN naučit se malou latentní reprezentaci.

Latentní reprezentace Poznámka 19

Komprimované reprezentace se také nazývá jako latentní.

Poznámka 20

Autoencoder … automatická kódování data („auto“ jako „self“).

Cílem tréninku je minimalizovat rozdíl mezi původním vstupem a rekonstruovaným výstupem. 
Trénovací množina je složená z 𝑝 dvojic ⟨𝑥𝑖, 𝑡𝑖⟩, kde 𝑥𝑖 ∈ ℝ𝑛 a 𝑡𝑖 ∈ ℝ𝑚. Ještě je tam nějaká 
chybová funkce.
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Používá se při redukci dimenzionality (komprimace dat třeba pro předzpracování), odstranění 
šumu (např. rekonstrukce „rozbitých“ dat).

7.2  Variable Autoencoder (VAE)

Oproti AE přidá pravděpodobnostní inferenci a má stochastickou reprezentaci. Mapování není 
tak přímočaté jako u AE, ale vstupní data se převádí na střední hodnotu 𝜇 a odchylku 𝜎. Výběr 
pak není deterministikcý, ale náhodný podle speciálního rozdělení.

Výpočet má 3 kroky:
1. funkce enkodéru – pro vstupní data se spočítají parametry latentní reprezentace (střední 

hodnota a směrodatná odchylka) a na jejich základě se definuje distribuce, ze které se 
vzorkuje

2. vzorkování (sampling) – vybere se vzorek
3. funkce dekodéru – dekodér bere vybranou latentní proměnnou a snaží se rekonstruovat 

původní vstupní data

Problémem může být prostřední krok vzorkování, protože náhodností neumožňuje hledat gra
dient (není tam derivace). Tím pádem nemůžeme optimalizovat váhy pomocí backpropagation. 
Řešení je použít externí šum 𝜀 ∼ 𝒩︀(0, 1) a výpočet pak je 𝘻 = 𝜇 + 𝜎 ⊙ 𝜀 (⊙ je Hadarmadův 
součin). Takže náhodnost je pak mimo enkodér a operace jsou deterministické.

7.3  Generative Adversarial Networks (GAN)

Zde se nové instance generují přímo vzorkováním. Je tvořen 2 neuronovými sítěmi (generátor a 
diskriminátor), které se trénují navzájem pomocí konkurečního učení. Každá síť má jiný úkol.

Generátor

Vytváří falešná data z šumu, která se co nejvíce podobají reálným (např. obrázky nebo text). 
Začíná se náhodným vektorem z latentního prostoru z normálního rozdělení.

Diskriminátor

Má za úkol označit jestli se jedná o pravá data nebo falešná data (vytvořená generátorem).

Tyto 2 části mezi sebou soupeří, jeden se snaží o co nejvíce realistiká data a druhý se snaží je 
co nejlépe odhalit (tzv. hra s nulovým součtem).

Proces trénování je iterativní (opakuje se dokud se nedosáhne požadované úrovně) a probíhá 
následovně:

1. Aktualizace parametrů diskriminátoru.
2. Diskriminátor dostane data pravá i falešná (obojí označena). Na těchto datech se učí 

maximalizovat svou spárvnou předpověď.
3. Po aktualizaci diskriminátoru se jeho nastavení zmrazí a aktualizuje se generátor.
4. Generátor dostane náhodný šumový vektor, na jehož základě tvoří co nejvíce realistická 

data.
5. Ztrátová funkce generátoru je nastavená tak, aby minimalizovala rozpoznání diskriminá

torem.

Při trénování mohou nastat problémy – nestabilita (oscialace výsledků ⇒ nikdy se nedosáhne 
požadované úrovně) nebo mode collapse (generátor netvoří rozmanité výstupy).
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Poznámka 21

Tento přístup generuje i „obrazy“ a „umění“. Dokonce se něco z toho i prodalo v reálné 
aukci.

7.4  Generativní modely řízené šumem (difuzní modely)

Jsou stabilnější alternativou k předchozím zmíněným modelům. Idea přístupu má 2 stochastické 
procesy – dopředná difuze přidávající Gaussův šum k čistému obrázku dokud z něj není jen 
šum a zpětná difuze trénující síť odebírat šum a získat původní obrázek.

Obrázek 19: Postup difuzního modelu.

Dopředný proces je fixní a nemá učitelné parametry. V časových krocíh se prostě přidává dané 
množství šumu.

Zpětná difuze je jádrem tohoto přístupu (obvykle architektura U-Net). Vstupem je zašuměný 
obrázek 𝘹𝑡 a informace o čase 𝑡. Výstup sítě má predikovat přidaný šum v danémn kroku. 
Chybovou funkcí je Means Squared Error (MSE) mezi skutečně přidaným šumem a prediko
vaným šumem.

7.4.1  Architektura U-Net

Konvoluční síť, která má tvar písmene U – úlohy kde vstup i výstup musí mít stejné rozlišení.

[Tady asi dopsat další větší podrobnosti z konce 6. prezentace.]
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8  Týden 08 - Asociativní sítě

10. listopadu 2025

Univerzální aproximační schopnost Theorem 22

Nechť 𝑓 : ℝ𝑛 → ℝ je spojitá funkce definovaná na kompantní podmnožině 𝘟  množiny ℝ𝑛. 
Pak pro každé 𝜀 > 0 existuje vícevrstevná NN s jednou skrytou vrstvou obsahující konečný 
počet neuronů.

Tzn. kdykoliv je chování systému popsatelné spojitou funkcí na kompaktní množině, lze ho 
libovolně popsat NN.

8.1  Asociativní síť (ANN)

Inspirováno lidskou pamětí. Jsou schopné se učit a následně si vybavit vzory na základě 
částečných/zkreslených vstupů. Jsou 2 typy autoasociativní sítě vybavující si celý vzor z jeho 
části a heteroasocitivní sítě asociující různé vzory mezi sebou.

8.1.1  Hopfieldova síť

Jde o autoasociativní síť. Umožňuje ukládat vzory a následně je vybavit z neúplných (poško
zených) verzí. Má tzv. energetickou funkci. Síť se sanží dosáhnout stavu s minimální energií, 
která odpovídá následujícímu vzoru

𝐸 = −1
2

⋅ ∑
𝑛

𝑗=1
∑

𝑛

𝑖=1
𝑦𝑖𝑤𝑖𝑗𝑦𝑗

Jde o jednovrstevnou síť a všechny neurony jsou vzájemně propojeny (kromě smyček sami na 
sebe). Všechny váhy jsou symetrické (𝑤𝑖𝑗 = 𝑤𝑗𝑖). Neurony mají obvykle diskrétní výstup (třeba 
0 a 1).

Trénink sítě se neprovádí pomocí backpropagation (takže je dost odlišný). Používá se Hebbovo 
pravidlo pro nastavení vah. Konkrétně:

1. Inicializuje se váhová matice (𝑤𝑖𝑗 = 𝑤𝑗𝑖) a diagonální prvky jsou 0.
2. Pro každý vzor upravíme váhy podle Hebbova pravidla (2 neurony aktivní současně ⇒ 

váha mezi nimi by měla být posílena).
3. Normalizace nebo škálování váh pro předejití nestabilitě sítě. Bežný přístup je dělení 

celkové váhy každého spojení počtem neuronů v síti.

Mohou být 2 základní režimy aktualiazce neuronů – asynchronní (neurony se katualizují jeden 
po druhém v náhodném pořadí) a synchronní aktualiazce (aktualizace všech současně, něco 
jako paralelní zpracování).

Kapacita sítě je velmi omezená – může si efektivně ukládat přibližně 15 % vzorů z počtu neuronů 
(tzn. mám 100 neuronů, tak můžu uložit zhruba 15 vzorů). Obecně se tedy nikde v praxi nyní 
nevyužívá.

Využívalo se to pro hledání přijetelných řešení TSP. Použila se reprezentace maticí. Poměrně 
rozsáhlé a ve slajdech 7a rozepsané.
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8.2  Samoorganizující se NN (SONN)

NN využívající kompetitivní učení. Je dána množina 𝘛  vzorů a parametr 𝘮, což je počet 
reprezentatnů a výstupních neuronů. Každý reprezentant je dán vektorem 𝘸𝑗 (codebook word). 
Jsou-li určeny 𝑤 a vstup 𝑥, tak je vstupu 𝑥 přiřazen reprezentant 𝘤, který je mu nejblíže (podle 
𝑐 = arg min𝑛

𝑗=1‖ 𝑥 − 𝑤𝑗 ‖). Cílem je najít 𝘮 reprezentantů, pro které je

𝐸 = 1
|𝑃 |

⋅ ∑
𝑝∈𝑃

‖ 𝑥𝑝 − 𝑤𝑐‖2

minimální.

8.2.1  Kompetitivní učení

Neurony mezi sebou soutěží o výstup. Obvykle se řídí pravidlem winner takes all (takže se vždy 
aktivuje jen 1 neuron). Toto způsobí „specializaci“ neuronů na růzmné signály. K tomuto učení 
není potřeba externí označení nebo klasifikace vstupů.

8.2.2  Lloydův algoritmus učení (k-means shlukování)

Základní algoritmus pro shlukovou analýzu. Využívá kompetitivní učení bez učitele. Pracuje v 
iteracích.

1. Inicializace reprezentatnů – probíhá náhodně, vybere se 𝑘 bodů, které považujeme za 
počáteční středy

𝑇𝑟 = {𝑝 ∈ 𝑃 | 𝑟 = arg min
𝑛

𝑗=1
‖ 𝑥𝑝 ‖} − 𝑤𝑗

2. Přiřazení vstupích bodů – každý vstupní bod se přiřadí nejbližšímu reprezentantu
3. Aktualizace reprezentantů – váhové vektory se aktualizují tak, aby lépe reprezentovaly 

přiřazené vstupní body, obvykle se používá průměr (těžiště) všechn bodů přiřezených k 
tomuto reprezentantu

𝑤𝑟 = 1
| 𝑇𝑟 |

∑
𝑥∈𝑇𝑟

𝑥

Krok 2. a 3. se opakují dokud nedojde ke konvergenci (algoritmus se ustáli a nedochází k dalším 
změnám při opakovaných výpočtech) reprezentantů.

8.2.3  Kohenovo učení a mapy

Aktualizace se provádí po každém vstupním vzoru (rychlejší a flexibilnější adaptace). Pro každý 
vstupní vektor 𝑥 se identifikuje vítězný neuron jehož váhový vektor 𝑤𝑐 je mu nejblíže podle 
Euklidovské vzdálenosti. Aktualizace váhového vektrou vítězného neuronů sousedů se provádí 
podle:

𝑤𝑗(𝑡+1) = {
𝑤𝑗(𝑡) + 𝜃(𝑡, 𝑖, 𝑗) ⋅ (𝑥 − 𝑤𝑗(𝑡))  pokud 𝑤𝑗 ∈ 𝑁𝛿(𝑖) je vítěz
𝑤𝑗(𝑡)     jinak

kde 𝜃(𝑡) je rychlost učení (v čase se zmenšuje).

Kohenovy (samoorganizující se) mapy zavádí topologickou strukturu reprezentantů (2D 
mřížka). Redukuje dimenzionalitu a přináší vizualizaci. Můžeme se na mapa dívat pomocí U-
-Matrix, která dává světlé (neurony si jsou velmi podobné = shluk) a tmavé (data se prudce 
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mění) hodnoty. Topologickou strukturu můžeme vytvořit třeba vhodnou vzáleností 𝑑 neuronů 
(a k nim brát i okolí).

Obrázek 20: Kohenovy mapy.

8.2.4  RBF (radial basis function) sítě

Skládají se ze 3 vrstev – vstupní, skrytá a výstupní. Jako aktivační funkce používají radiální 
bázové funkce (proto ten název). Snaží se prostor pokrýt oblastmi vlivu (narozdíl od MLP, kde 
se dělí přímkou).

Obvykle se jedná o Gaussovu funkci:

𝜙(𝑥) = 𝑒−𝛽‖ 𝑥−𝑐 ‖2

Obrázek 21: Gaussova funkce.

Učení takové sítě zahrnuje: určení středů RBF ve skryté vrstvě, nastavení vah mezi skrytou a 
výstupní vrstvou. K určení středů se používá buď k-means clustering nebo náhodný výběr.
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8.3  Fuzzy regulátory

Řídící systém je soubor komponent, který řídí chování jiného systému nebo zařízení. Jeho 
hlavním úkolem je dosažení nebo udržení požadovaného stavu systému (např. výkon). Příkladem 
může být seqay robot, který reaguje na náklon (signály) a pomocí fuzzy logiky říká motorům 
jak mají regulovat výkon, aby seqway držel rovnováhu a jel určeným směrem. Touto konkrétní 
části se budeme zabývat – controller a ten pro nás bude fuzzy regulátor.

Fuzzy regulátory využívají fuzzy logiku. Takže můžeme pracovat s neurčitostí a přibližnými 
hodnotami.

Fuzzy množina Definice 23

Standardní fuzzy množina v universu U je zobrazení

𝐴 : 𝑈 → [0, 1]

𝐴(𝑢) je stupeň příslušnosti prvku 𝑢 do množiny 𝐴.

Moderní fuzzy Definice 24

Nechť 𝐿 = ⟨𝐿, ≤⟩ je částečné uspořádáná množina. Fuzzy množina v universu 𝑈  je zobra
zení

𝐴 : 𝑈 → 𝐿

kde 𝑎 ∈ 𝐿 jsou stupně, 𝐴(𝑢) stupeň přílušnosti (čím větší, tím více tam prvek patří).

Podle toho jakou hodnotu má 𝐴(𝑢) tak tak moc tam 𝑢 patří (0 je nejménně a 1 nejvíce).

S takovýmito L-množinami můžeme provádět množinové operace jako standardně (zakreslíme 
to v grafu těch 2 „funkcí“).

T-norma Definice 25

T-norma na úplném svazu ⟨𝐿, ≤⟩ je binární operace ⊗ na 𝐿, která je asociativní, komuta
tivní, monotónni a má 1 jako neutrální prvek, t.j.

𝑎 ⊗ (𝑏 ⊗ 𝑐) = (𝑎 ⊗ 𝑏) ⊗ 𝑐

𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎

𝑎 ≤ 𝑏 ⇒ 𝑎 ⊗ 𝑐 ≤ 𝑏 ⊗ 𝑐

𝑎 ⊗ 1 = 𝑎

Máme 3 nejdůležitější T-normy:
1. Lukasiewiczova

𝑎 ⊗ 𝑏 = max(𝑎 + 𝑏 − 1, 0)

2. Gödelova

𝑎 ⊗ 𝑏 = min(𝑎, 𝑏)

3. Goguenova (součinová)

𝑎 ⊗ 𝑏 = 𝑎 ⋅ 𝑏
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Lingvistická proměnná
Jde o proměnnou, která nabývá lingvistických hodnot (prostě slova). Ke každé lingvistické 
hodnotě 𝑡 je přiřazena fuzzy množina 𝐴𝑡, která mapuje lingvistické hodnoty na číselné (fuzzy 
hodnoty).

8.3.1  Báze pravidel

Obsahuje pravidla typu if-then, které řídí rozhodovací proces. KAždé pravidlo říká do dělat v 
jaké situaci. Jsou formulována takto vstup = lingvistická proměnná a výstup = akce, která má 
být provedena. Např. if 𝑥1 is 𝑡1,1 and 𝑥2 … then 𝑦 is 𝑜1 (𝑥 a 𝑦 jsou lingvistické proměnné a 𝑡, 
𝑜 lingivistické termy).

Každá pravidlo se dá reprezentovat jako relace.

8.3.2  Fuzzy inferenční mechanismus

Compositional Rule Inference (CRI) je technika používaná v tzv. systémech založených na fuzzy 
pravidlech, základních součástech fuzzy regulátorů. Ve fuzzy logice je toto pravidlo považováno 
za pravidlo odvození.

Definice 26

Nechť 𝑅 je 𝐿-relace mezi 𝑋 a 𝑌  , 𝐴 je 𝐿-množina v 𝑋. 𝐿-množina 𝐵 získaná z 𝐴 a 𝑅 
pomocí CRI je definována jako

𝐵(𝑦) = ⋁
𝑥∈𝑋

𝐴(𝑥) ⊗ 𝑅(𝑥, 𝑦)

neboli 𝐵 = 𝐴⚬𝑅.

𝐵(𝑦) je stupeň pravdivosti výroku.

8.3.3  Defuzzifikace

Jde o proces vytváření kvantifikovatelného výsledku v crisp logice (klasická logika), jsou-li dány 
fuzzy množiny.

Těžiště (center of gravity nebo centroid) je metoda, která vypočítá „těžiště“ fuzzy 
množiny, které se pak dá jako výstupní výsledek.

8.3.4  Takagi-Sugenův model

Každé pravidlo zde vede k výstupu, který je lineární funkcí všech vstupních proměnných , 
nikoliv k fuzzy množině. Takže tvar je: IF 𝑥1 je 𝑡1,1 and 𝑥2 je 𝑡1,2 THEN 𝑦 = 𝑓(𝑥1, 𝑥2)

O univerzální aproximační schopnosti fuzzy regulátorů Theorem 27

8.3.5  Mambdaniho model

Velmi populární model fuzzy inference. Umí pracovat s přiorozeným jayzkem jak na vstupu, tak 
na výstupu. Používá 2 metody, které ji odlišují clipping a scaling. Prostě v grafu se uřízne vršek 
pod nějakou hodnotou 𝛼 a zůstane jen spodní část (lichoběžník), který se následně „stlačí“, 
aby si zachoval tvar, ale byl nížší. Clipping je oproti scalingu výrazně méně citlivější (dělá tupé 
tvary).

37



9  Týden 09 - Evoluční algoritmy a aplikace algoritmů v 
praxi

• schéma (délka schématu, hodnota schématu )
• křížení
• generace
• přežití křížení
• selekce

Evoluční algoritmus Definice 28

Třída optimalizačních metod inspirovaných principy biologické evoluce. Např. genetické 
algoritmy, evoluční strategie, genetické programování, diferenciální evoluce.

Nové nebo upravené vlastnosti jedince vznikají pomocí 3 mechanismů, které slouží i pro inspiraci 
tvorby algoritmů:

• mutace
• křížení
• přirozený výběr.

Můžeme to využít pro řešení optimalizačních problémů tím, že udržujeme populaci potenciálních 
řešení, na které iterativně provádíme evoluci dokud nedosáhneme požadovaného stavu.

9.1  Kroky a schéma evolučního algoritmu

1. Kódování kandidátních řešení. Populace je množinou kódů reprezentující tato řešení. 
Prakticky vše jde vždy převést na binární řetězec.

2. Počáteční populace (binární řetězce) se obvykle generuje náhodně.
3. Fitness funkce je funkce, která ohodnocuje daná řešení. Můžeme chtít neco maximalizovat 

nebo minimalizovat.
4. Genetické operátory provádí mutace či křížení.
5. Je nutné definovat ukončující podmínku, velikost populace, pravděpodobnost mutace, 

fungování křížení atd.

Tohle schéma jde zapsat nějakým pseudokódem nebo i graficky znázornit.

Příkladem může být hledání maxima funkce.

9.2  Tvorba nové generace

Děje se ve 3 krocích. Čím lepší řetězec, tím větší šance že půjde dál (logické).

Reprodukce – kopírování řetězců ze staré generace do nové. Třeba pomocí vážené rulety (ta 
ale nepřinese nic nového a můžeme mít duplicity).

Křížení – umožmí vyměnit si informaci mezi řetězci. Pro křížení musíme mít pravděpodobnost s 
jakou proběhne. Má destruktivní vliv na schémata (závisí to hodně na pozicích). Delší schémata 
mají větší náchylnost ke ztrátě při křížení.

Mutace – obvykle má velmi nízkou pravděpodobnost. Zavádí genetickou variabilitu do popu
lace. Funguje tak, že prostě změní bit v řetězci. Pravděpodobnost změny je 𝑝𝑚.
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9.3  Schéma

Něco jako šablona která poposuje podmnožinu daného řetězce. Má stjenou délku jako ostatní 
řetězce. Umožní analýzu a sledování vlastností podmnožin.

Příklad schématu Příklad 29

Příklad schématu **1*0010. Řetězec 00100010 tam patří, 11100010 taky, ale 11001101 ne.

Pro schéma definujeme fitness v dané generaci. Je to průměr všech fitness řetězců v generaci, 
které odpovídají danému schématu. Tím můžeme vysledovat jak které skupiny přispívají ke 
zlepšení.

Může dojít k problému kdy některé schéma má velmi vysoké skóre, ale zároveň je velmi neprav
děpodobné, že bychom z tohoto schématu získali ten nejlepší řetězec. Muselo by dojít k vhodné 
mutaci. Může dojít k problému tzv. problém sousedních silných schémat, kdy jsou dvě schémata 
velmi blízko sebe a mají vysoké skóre, ale jsou úplně opačná (např. 011***** a 100*****). 
Dalším problémem může být problém křížení rovnocených schémat. Generace dospěje do stavu 
kdy jsou řetězce odpovídající 2 schématům rovnoměrně zastoupeny (011***** a 100*****). 
Pokud tyto 2 řetězce zkřížímě (zaměřujeme se na první 3 pozice) dojde k tomu, že potomci 
budou slabší. Z toho plyne, že křížení rovnocených schémat vede ke snížení kvality (zpomalí 
nebo zastaví pokrok k optimálnímu řešení).

Určená pozice: pozice ve schématu, kde je 0 nebo 1

Délka schéamtu 𝛿(𝐻): vzdálenost mezi první a poslední určenou pozicí

Řád schématu 𝑜(𝐻): počet určených pozic ve schématu

Řešíme otázku přežití schématu v generaci. Jak se bdue měnit počet řetězců během jednoho 
kroku. Máme schéma 𝐻, počet řetězců v dané generaci po t-tém kroku je 𝑚(𝐻, 𝑡) a populace 
po t-tém kroku 𝐴(𝑡). Snažíme se zjistit 𝑚(𝐻, 𝑡 + 1). Hlavními faktory pro ovlivnění je selekce, 
křížení a mutace.

Pravděpodobnsot výběru řetězce Definice 30

Je dána vztahem

𝑝𝑖 = 𝑓𝑖
∑ 𝑓𝑖

kde 𝑓𝑖 je kvalita 𝑖-tého řetězce a a suma je jejich součet.

Očekávaný počet řetězců shodujících se se schématem 𝐻 Definice 31

Po reprodukci z generace 𝐴(𝑡) je tento počet dán jako:

𝑚(𝐻, 𝑡 + 1) = 𝑚(𝐻, 𝑡) ⋅ 𝑛 ⋅ 𝑓(𝐻)
∑ 𝑓𝑗

kde 𝑛 je počet řetězců v generaci, 𝑓(𝐻) je průměrná kvalita řetězce v generaci 𝐻 a 𝑓𝑗 je 
součet kvalit.

Prostě jak reprodukce ovlivní zachování schématu.
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Průměrná kvalita řetězce Definice 32

𝑓 =
∑ 𝑓𝑗

𝑛

Pokud je kvalita nadprůměrná bude řetězců více a naopak ⇒ reprodukce odtraňuje postupně 
schémata s podprůměrnou kvalitou.

Můžeme spočítat i rychlost růstu schématu. Vzniká nám tím vlastně geometrická řada (což je 
exponenciální růst).

Pravděpodobnost ztráty schématu při křížení Definice 33

𝑝𝑑 ≤ 𝛿(𝐻)
ℓ − 1

kde ℓ je délka řetězce. Pravděpodobnost že alespoň jeden potomek odpovídá schématu 𝐻 
je 1 − 𝑝𝑑.

Z předchozích poznatků plyne, že schéma s malou délkou a vysokou kvalitou mají největší 
šanci k přežití.

Pravděpodobnost přežití schéamtu při mutaci Definice 34

Pravděpodobnost že řetězec 𝐴 bude po mutaci stále odpovídat schématu 𝐻 je

𝑝𝑠 = (1 − 𝑝𝑚)𝑜(𝐻)

Věta o schématech Theorem 35

Krátká, nadpůrměrná schémata s nízkým řádem (počet určených pozic) získávají exponen
ciální nárůst počtu řetězců v následujících generacích.

Schémata z předchozí věty se nazývají stavební bloky a jsou základem pro vytváření kvalitních 
řešení v genetických algoritmech. Mohlo by se jednat o schéma *1*0* (pokud by mělo nadprů
měrnou kvalitu).

9.4  Grayův kód

Zajišťuje že 2 sousední body v prohledávaném prostoru se liší pouze na jediné pozici. To 
změnšuje riziko výrazných změn.

První bit je stejný jako bit binárního čísla. Další bit je XOR předchozího bitu binárního čísla 
a příslušného bitu binárního čísla.

Převod čísla na Grayův kód Příklad 36

Číslo 1011. První bit bude 1. Druhý bit bude 1 ⊕ 0 = 1. Třetí bit bude 0 ⊕ 1 = 1. Čtvrtý 
bit bude 1 ⊕ 1 = 0. Výsledek je 1110.
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9.5  Elitářství

V evolučním algoritmu může dojít ke ztrátě nalezeného maxima (které může být globální). 
Elitářství dokáže ochránit nejelepší řetězec dané generace, že 100% přežije do další bez ohledu 
na výsledek rulety.

Prostě s určít 𝑚 nejlepších řetězců (obvykle se jedná o jediný) v dané generaci, které nejsou 
ovlivněny křížením ani mutací a automaticky přechází dále.

9.6  Podobná kvalita a fitness scaling (škálování)

Když jsou řetězce v okolí maxima a mají podobnou kvalitu, algoritmus ztratí schopnost hledat 
nejlepší řešení. Musíme více do podrobna rozlišit mezi řetězci mající podobnou kvalitu. To 
zajistí fitness scaling, který zvýrazní rozdíly mezi podobnými skóre u řetězců.

Lineární škálování

Pro každý řetězec zajistíme přepočet podle vztahu:

𝑓 = 𝑎 + 𝑓 ⋅ 𝑏

𝑓max = 𝐶mult ⋅ 𝑓avg

𝐶mult je obvykle dáno něco jako 1.2 nebo 2.0.

𝑎 = 𝑓avg ⋅
𝑓max − 𝐶mult ⋅ 𝑓avg

𝑓max − 𝑓avg

𝑏 =
(𝐶mult − 1) ⋅ 𝑓avg

𝑓max − 𝑓avg

Průměrná kvalita 𝑓avg by měla zůstat zachována, protože zajišťuje stabilitu pravděpodobnosti 
výběru řetězců. Takový řetězec má pravděpodobnost výběru 𝑃 = 1

𝑛 , kde 𝑛 je počet řetězců v 
generaci.

Po škálování můžeme některé kvality dostat záporné. To má 2 možnosti řešení – neškálovat, 
nebo upravit 𝑎 a 𝑏, tak aby nejmíň byla 0.

9.7  Problém 2-rukého (𝑘-rukého) bandity

Slouží pro vysvětlení proč je exponenciáůních nárůst v oněch specifických schématech užitečný.

Zadání problému. Máme stroj se 2 pákami. Po zatažení za páku získáme průměrnou výhru 
(𝑚1 nebo 𝑚2 – tyto hodnoty jsou neznámé). Máme 𝑁  pokusů. Cílem je navrhnout strategii, 
která maximulizuje celkovou výhru.

Řešení. Používá se tzv. strategie průzkumu a exploatace. Na začátku nevíme, která páka je lepší. 
Rozdělíme teda problém na 2 části, kde v první průzkumné pozorujeme, která páka dodá lepší 
výsledky a v druhé části se soustředíme na lepší páku, abychom maximalizovali zisk. Otázkou 
je jak najít optimální počet pokusů ℓ, který věnujeme které části. Jde použít tento vzorec

𝑁 − 𝑛∗ ≈ √8𝜋𝑏4 ln(𝑁2) ⋅ 𝑒
𝑛∗
2𝑏2

kde 𝑛∗ je počet pokusů na horší páce, 𝑏 je parametr související s rozptylem výher páky, ln(𝑁2) 
je závilost na celkovém počtu 𝑁  pokusů.
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9.7.1  Aplikace problému na genetické algoritmy

Genetický algoritmus jde brát jako mnoho problémů 𝑘-rukého bandity (jedno schéma = jedna 
páka). Průměrná výhra je jako kvalita schématu a počet tahů za páku je jako počet řetězců 
daného schématu. Je žádoucí dosáhnout exponenciálního nárůstu pokusu (u nejlepších pák), 
protože potom to odpovídá šíření kvalitních schémat.

10  Info ke zkoušce

• Povolení nahládnout do papírových materiálu na 2 minuty.
• Nemělo by se jednat o moc matiky.
• Asi né tak podrobné jako na přednášce, ale víc než jen úplně povrchově.

Seznam témat ke zkoušce

1. perceptron, funkce, geometrická interpretace, učení, separabilní problémy, problém XOR

2. FFNN, architektura, vrstvy, aktivační funkce, věta o aproximaci, přehledově trénink, 
kódování vstupů a výstupů

3. Backpropagation, v obecné architektuře, ve vrstvených sítích

4. Optimalizace gradientního sestupu: momentum, NAG, adaptivní LR, Silva&Almeida, 
DBD, Rprop, Adagrad, RMSProp, Adam (ne všechno zaráz, vyberu třeba dvě z nich.

5. Zpracování sekvencí: RNN, BP in time, LSTM, GRU

6. Attention mechanismy

7. Transformer, architektura, poziční kódování, residuální spojení

8. Konvoluční sítě, konvoluční vrstvy a jejich hyperparametry, saliency maps

9. Generativní NN: AE, VAE, GANs, difuzní modely

10. Fuzzy regulátory, báze pravidel, inference, Takagi-Sugeno model, Mambdaniho model.

11. Asociativní sítě, Hopfieldova síť, SONN, Kohonenovy mapy, RBF sítě

12. Genetické algoritmy

42


	1   Týden 01 - neuron a perceptron
	1.1   Turingův test
	1.2   Perceptron
	1.2.1   Geometrická interpretace perceptronu
	1.2.2   XOR problém

	1.3   Učení perceptronu
	1.4   Vícevrstvé neuronové sítě

	2   Týden 02 - trénování vícevrstevných sítí
	2.1   Dopředná neuronová síť (FFNN)
	2.2   Trénování vícevrstvých sítí
	2.2.1   Výpočet gradientu

	2.3   Backproagation algoritmus
	2.3.1   Fungování sítě

	2.4   Vrstvené FFNN
	2.4.1   Učení vrstvené FFN sítě

	2.5   Reziduální sítě (spojení)

	3   Týden 03 - pokračování o trénování
	3.1   Kódování vstupů
	3.2   Ztrátové funkce
	3.2.1   Křížová entropie (cross-entropy)

	3.3   Softmax vrstva
	3.4   Problém mizejících gradientů
	3.5   Problém explodujících gradientů
	3.6   Generalizace vs Memorizace
	3.7   Rychlé trénování (optimalizace gradientního sestupu)
	3.7.1   Nesterov Accelerated Gradient (NAG)
	3.7.2   Aktivní výběr trénovacích dat

	3.8   Adaptivní algoritmy pro learning rate
	3.8.1   Newtonova metoda
	3.8.2   Silva & Almeida’s algoritmus
	3.8.3   Delta-bar-delat (DBD)
	3.8.4   Resilent backpropagation (Rprop)
	3.8.5   AdaGrad
	3.8.6   RMSProp
	3.8.7   Adam


	4   Týden 04 - Rekurentní neuronové sítě
	4.1   Rekurentní NN (RNN)
	4.1.1   Backproagationt through time (BPTT)
	4.1.2   Long Short-Term Memory (LSTM)
	4.1.3   Grated Recurrent Unit (GRU)

	4.2   Bidirectional RNN (BiRNN)
	4.3   Seq2Seq modely
	4.4   Atention mechanismy
	4.4.1   Bahdanau attention mechanismus
	4.4.2   Luong attention mechanismus
	4.4.3   Multi-head attention mechanismus


	5   Týden 05 - Transformer
	5.1   Tokenizace
	5.2   Word embedding (WE)
	5.2.1   Word2Vec
	5.2.2   Skip-Gram
	5.2.3   Continous Bag of Word (CBOW)

	5.3   Paralelní zpracování v Transfomeru
	5.4   Poziční kódování (PE)
	5.5   Self Attention

	6   Týden 06 - Konvoluční neuronové sítě (CCN)
	6.1   Co jsou konvoluční sítě?
	6.2   Složení CCN
	6.2.1   Konvoluce
	6.2.2   Pooling vrstva

	6.3   Architektura LeNet-5
	6.4   Architektura AlexNet
	6.5   Architektura ResNet
	6.6   Technika Dropout
	6.7   Architektura GoogleNet
	6.8   Vizualizace a interpretace
	6.8.1   Saliency map (mapa důležitosti)
	6.8.2   Grad-CAM

	6.9   Povídání o cvičení

	7   Týden 07 - Generativní a diskriminační modely
	7.1   Autoencodery (AE)
	7.2   Variable Autoencoder (VAE)
	7.3   Generative Adversarial Networks (GAN)
	7.4   Generativní modely řízené šumem (difuzní modely)
	7.4.1   Architektura U-Net


	8   Týden 08 - Asociativní sítě
	8.1   Asociativní síť (ANN)
	8.1.1   Hopfieldova síť

	8.2   Samoorganizující se NN (SONN)
	8.2.1   Kompetitivní učení
	8.2.2   Lloydův algoritmus učení (k-means shlukování)
	8.2.3   Kohenovo učení a mapy
	8.2.4   RBF (radial basis function) sítě

	8.3   Fuzzy regulátory
	8.3.1   Báze pravidel
	8.3.2   Fuzzy inferenční mechanismus
	8.3.3   Defuzzifikace
	8.3.4   Takagi-Sugenův model
	8.3.5   Mambdaniho model


	9   Týden 09 - Evoluční algoritmy a aplikace algoritmů v praxi
	9.1   Kroky a schéma evolučního algoritmu
	9.2   Tvorba nové generace
	9.3   Schéma
	9.4   Grayův kód
	9.5   Elitářství
	9.6   Podobná kvalita a fitness scaling (škálování)
	9.7   Problém 2-rukého (k-rukého) bandity
	9.7.1   Aplikace problému na genetické algoritmy


	10   Info ke zkoušce

