I\F

KATEDRA
INFORMATIKY

UNIVERZITA PALACKEHO V OLOMOUCI

KMI/PDS - Paralelni a distribuované

systémy

Poznamky z vyuky (2025 — 2026)
Verze z 13. ledna 2026

Vojtéch Netrh
vojtanetrh@gmail.com

Obsah

1

Obecny tvod 4
1.1 ZKouSKovE OtAzKyot 4
1.2 CIANKY Ke ZKOUSCE « ..o e e 4
1.3 Par pojmt na zacatek 4
1.4 Flynnova taxonomieo.uonuon it 5
1.5 Kdy a proc to delat? 5
151 SKALOVAD © vttt ettt ettt e e 5
1.6 Zrychleni VYPOCTT . ..ottt e 5
Paralelni systémy 5
2.1 Synchronizace 5
2.2 VIastnosti Programiulttt e e 6
2.3 Kritickd seKce 6
2.3.1 Dekkerliv algoritimusovnutt i e 7
2.3.2 Petersonuv algoritmus (Tie-breaker)cooo i 7
2.3.3 Bakery algoritmus ... 7
2.3.4 Lamporttv Bakery algoritmus 8
2.3.5 DalsSi algoritimy . ..o vot et e 9
2.4 Synchronizacni primitiva 9
2.4.1 Slozené atomické akee 9
2.4.2 Zamek (lock, MULEX)oouiii 9
2.4.3 Semafor 9
2,44 MORNITOT oottt e 10
2.4.5 Podminéna promennaouiuiointieii e 10
2.4.6 BaTibra ... 10
2.4.7 Threadpool e 10
2.5 Synchronizacni problémyo 10
2.5.1 Producent a konzument e 10
2.5.2 CHendli a PISAFLo 11
2.5.3 VeceFicl filozofové 13
2.5.4 Morisstv algoritmust et 13
2.5.5 Problém Kulakilo 14
2.6 Navrh paralelniho systému ... i 15
2.6.1 Fosterova metodologie 16
Distribuované systémy 17
3.1 Architektura distribuovanych systému 17
3.2 Komunikace v distribuovaném systému i 17
3.2.1 Midleware protokolyo.ouoiiiiii e 18
3.2.2 Remote Procedure Call (RPC) 18
3.2.3 Dalsi moznosti komunikace 18
3.3 Koordinace a ¢as v distribuovanych systémech oL 18
3.3. 1 SKULECIIY CAS ettt ettt e e e 19
3.3.2 Cristianiiv algoritmus 19
3.3.3 Network Time Protocol (NTP) i 19
3.3.4 Reference Broadcast Synchronization (RBS) 19
3.3.5 LogiCKy Cas ..o 20

4

3.3.6 Koncept predchazeni (@ —b) 20

3.3.7 Lamportiv algoritmus 20
3.3.8 Vektorové hodiny ... 20
3.4 Vzajemné vylouCeni v DS 21
3.4.1 Centralizované TeSenio 21
3.4.2 Distribuované TeSeni i 21
3.4.3 ReSeni t0KEIOIN « . ..ottt 21
3.4.4 Decentralizované TeSeniuiutiii e 22
345 ZI0OKEDET . .ot 22
3.5 Lidr a jeho volba 22
3.5.1 Bully algoritmust e 22
3.5.2 Ring algoritmuso 23
3.5.3 Raft algoritmus i 24
3.5.4 Algoritmus pro ad-hoc! sit€o 24
3.5.5 Dalsi algoritmyot 25
3.6 Chyby v distribuovanych systémech 25
3.6.1 Klasifikace chybo 25
3.6.2 Byzantské chyby 26
3.6.3 Detekovani chyb a redundance i, 26
3.7 Chord SySteIMt 26
3.8 Shoda v distribuovaném systémuo it 28
3.8 1 Redundanceo 28
3.8.2 Algoritmus Flooding consensusc..ooiuiiiiiiiiiiiiiiiaa... 28
3.8.3 Byzantské chyby podruhé 28
3.8.4 Raft algoritmus 29
3.8.5 Paxos algoritmus 29
3.9 Replikace a KONziStence 29
3.9.1 Replikaceo 30
3.9.2 RetEZOVA TEPIKACE « ... 30
3.9.3 KONZIiStencettt 30
3.9.4 Neékolik teorému na zavVerttt 30
3.10 Globalni stav v DS ... 31
3.10.1 Chandy-Lamport algoritmus i 31
3.10.2 Dijkstra-Scholten algoritmusco i 32
3.11 Distribuované transakce 32
3.11.1 Jednofazovy commito 32
3.11.2 Dvoufadzovy commito 32
3.11.3 TTifazovy COmMMIL . ..ot 32
Blockchain 33
4.1 BloKY .o 33
4.1.1 Dalsi typy shod 34
4.2 Merkle tree 34
4.3 Problémy blockchainu 34
4.4 Hrozby blockchainu 35
4.5 BIbCOIn ..ot 35
4.6 Ethereum 35

'Obvykle bezdratovd sit bez centralniho bodu a s proménlivou topologii

1 Obecny tvod

Dfiv tenhle kurz ucil RNDr. Martin Trnecka, Ph.D., takze se da cerpat i z jeho materidlu
na webu. Jednak tam jsou prezentace, pripadné pak i cviceni a néjaky alespon tvodni koéd v
Pythonu.

Jednoduchd knihovna pro simulaci distribuovanych systému od Toméase Mikuly https://github.

com/mikulatomas/distsim

Python pouzivam pro ukédzky kédu jelikoz se nejvic blizi pseudokdédu a zaroven je u néj mozné
mit hezky zvyraznénou syntaxi (konkrétni diky balicku codly).

Seznam bodt z jednotlivych tkolt je ve sdilené tabulce.

1.1 Zkouskové otazky

Algoritmy pro kritickou sekci.

Zakladni synchronizac¢ni primitiva a jejich pouziti.
Prostredky pro synchronizaci vldken.

Prostiedky pro synchronizaci procesu.
Koordinace ¢asu v DS.

Vzéjemné vylouceni v DS.

Volba lidra v DS.

Shoda v DS.

Tolerance chyby v DS.

© 0N oE WD

—_
e

Globélni stav v DS a distribuovany commit.

—_
—_

. Replikace a konzistence v DS.
. Blockchain.

—_
[\

1.2 Clanky ke zkousce

[Na webu jsou na né odkazy, tady je jen seznam o jaké jde.]

MapReduce: Simplified Data Processing on Large Clusters

ZooKeeper: Wait-free coordination for Internet-scale systems

In Search of an Understandable Consensus Algorithm (Extended Version)
Practical Byzantine Fault Tolerance

Uk W =

Bitcoin: A Peer-to-Peer Electronic Cash System

1.3 Par pojmu na zacatek

e Sekvenéni
e Paralelni
¢ Distribuované

o Cluster ... vice stroju v siti (typicky blizko sebe); schované za API

e Superpocditac .. cluster s velmi rychlym propojenim

¢ Grid computing ... vice stroju v siti; volnéjsi nez cluster

e Cloud .. transparentni pristup HW (IaaS), SW (SaaS) i platformé (PaaS)

http://trnecka.inf.upol.cz/teaching/pds/
http://trnecka.inf.upol.cz/teaching/pds/
https://github.com/mikulatomas/distsim
https://github.com/mikulatomas/distsim
https://upolomouc-my.sharepoint.com/:x:/g/personal/urbato02_upol_cz/Ee1qk3p3oDNPmG2Y5FFQT1IBT7-VR2ZuECw2lF8wjjX89w?e=zQGk5x

1.4 Flynnova taxonomie

e S .. single

e M .. multiple
e I .. instruction
« D .. data

V prubéhu ¢asu ruzné varianty a také u ruznych véci — SISD (von Neuman), SIMD (vektorové
instrukee, grafiky), MISD (neuronové sité) a MIMD (dnes uz vse). A vlastné ani to MIMD uz
dnes nestaci.

Existuji dédle rizné nastavby, pfipadné jemnéjsi déleni — SMP, DSM, SPMD, ...

1.5 Kdy a proc¢ to délat?

Na uvod jedno dulezité pravidlo: pokud to neni treba, tak neparalelizovat! Dnes ale skoro
vzdy je nutné. Piinasi vyhody ¢i problémy v radé oblasti — vykon, spolehlivost, bezpec¢nost,
dostupnost...

1.5.1 Skalovani

1. Up (vertikalni) — lepsi CPU, rychlejsi disk, vice paméti, ...
2. Out (horizontalni) — vice stroju

1.6 Zrychleni vypocti

Existuje né€kolik moznych pohledi. Ke kazdému z nich je mozno udélat néjaky hezky graf,
pripadné reprezentovat i matematickym zapisem. Obecné jsou pro tyto zdkony néjaké limity,
na které narazi (fyzikélni, podle velikosti problému ¢i specifickych ¢dsti problému).

1. Mooruav zakon — kazdy 1,5 roku se vykon procesort zdvojnasobi
2. Amdahliv zdkon — pouzijeme vice procesorii pro reseni stejného problému
3. Gustafson-Barsistiv zakon — kdyz mame vice zdroji, mizeme problém resit detailnéji

2 Paralelni systémy

Tahle cast by mela vydat cca na 3-4 predndsky.

Mohou nastat takové 3 zdkladni problémy:
1. chyba soubéhu,
2. uvaznuti (deadlock a livelock),
3. vyhladovéni.

Konecénd mnozina sekvencénich procesi, kde kazdy proces sekvencéné vykondva atomické
operace.

Témi atomickycmi operacemi se prechazi mezi riznymi stavy (hodnoty proménnych, aktualni
instrukee).
2.1 Synchronizace

Vpodstaté jediny kol synchronizovat = vytesit omezeni na mozné scéniie/planky, které
jsou korektni. K tomu slouzi nékolik moznych néastroju — atomické operace, slozené atomické

operace? , synchroniza¢ni primitiva (semafor, zdmek, bariéra, ..). Scénare se daji zobectiovat a
podle daného vzoru vyftesit (neni potfeba vymyslet nic nového).

Atomickd proménnd je takova, kterou lze atomicky upravit.

Volatilni proménnd je takovéd, kterd ma vzdy posledni hodnotu (tzn. zména neni jen v

cache).

2.2 Vlastnosti programu

Klasické debugovani je nevhodné. Projit vSechny mozné scénare je totiz neredlne, kvuli jejich
velikému mnozstvi. Pomuze nam tedy (modalni a temporalni) logika, prekondice, postkondice
a Hoareho logika (viz co uz jsme fesili v PP4).

Mame 2 zékladni typy vlastnosti paralelniho programu — zivost (tvrzeni platné pro alespon 1
stav vypoctu) a bezpecnost (tvrzeni platné pro vSechny stavy vypoctu).

Dulezita vlastnost pro prostiedi/planovac je férovost (to uz taky zname z PP4). Planovac je
férovy pokud jsou vSechny scénére férové (¢ili pokud se proces chysta vykonat operaci, musi se
ve scénéri objevit). Rozlisujeme 2 typy férovosti.

slaba férovost = akce, ktera vzdy muze nastat, nékdy nastane (bez dalsiho omezeni)
silna férovost = akce, ktera nékdy mize nastat, nékdy nastane (je tam néjaké omezeni)

2.3 Kriticka sekce

Kriticka reference Poznamka 4

Vyskyt proménné je kritickd reference pokud do ni zapisuje jeden proces a ¢te ji jiny proces.?

Problém kritické sekce, je ¢ast programu kde program pracuje se sdilenymi zdroji a musime
vyresit, aby nedochézelo k problémum.

Prikaz await Poznamka 5

Prikaz await je (pasivni) ¢ekdni na splnéni podminky (neboli pferuseni).

Pozadavky pro korektni vyreseni kritické sekce jsou:
1. vzajemné vylouceni — max 1 proces v kritické sekci
2. absence uvaznuti — jestlize se néjaké procesy snazi soucasné vstoupit do kritické sekce,
pak jeden z nich musi nékdy uspét
3. absence vyhladovéni — pokud se proces snazi vstoupit do kritické sekce, jednou musi
uspet

Vytesil ho E. W. Dijkstra. Je to n procest, které ve smycce vykonavaji posloupnost akci
rozdélenou na kritickou a nekritickou sekci. Synchronizaci v podstaté zajistime korektnost.

Zatomicity a jeji konkrétni definice se muze lisit na zakladé konkrétniho systému/programovacim jazyku.
3Jeden piikaz muze obsahovat vice kritickych referenci

Dobré podivat se na ndvrhy resent v prezentaci 02. Predevsim ty co jsou nevhodné.

Pro reseni kticiké sekce se daji pouzit obecné algoritmy uvedené dale.

2.3.1 Dekkeruv algoritmus

Hlid4 pravo na vstup (turn) a zada o vstup (want) s moznosti vzdat se.

N
Sdilen4d pamét
wantA, wantB <« false
turn < A
A B
opakuj: opakuj:
A1: nekriticka sekce Bi: nekritickd sekce
As: wantA < true B,: wantB < true
As: while wantB Bs: while wantA
Ay if turn = B By: if turn = A
As: wantA < false Bs: wantB <« false
Ag: await turn = A Bs: await turn = B
Az wantA < true By: wantB < true
Ag: kriticka sekce Bg: kriticka sekce
Ag: turn < B Bg: turn < A
A1o: wantA <« false Big: wantB < false
- J

Obrézek 1: Dekkertuv algoritmus.

2.3.2 Petersonuv algoritmus (Tie-breaker)

Vychézi z Dekkerova algoritmu, ale cyklus s await nahrazen await se slozenou podminkou.

4 N
wantA, wantB <« false
turn «+ A
A B
opakuj: opakuj:
A1: nekriticka sekce Bi: nekriticka sekce
Ao: wantA <« true B>: wantB < true
Az: turn < A Bs: turn <+ B
As: By:
await not(wantB and turn=B) await not(wantA and turn=A)
Ags: kriticka sekce Bs: kriticka sekce
Ag: wantA <« false Bs: wantB < false
o J

Obrézek 2: Petersontiv algoritmus.

2.3.3 Bakery algoritmus

Simulace chovani v pekarné, kde se ¢eka na listky na chleba. Velmi hezké feseni, ale pomalé.

4 N\

nA nB+ 0
A B
opakuj: opakuj:
A1 nekritickd sekce By : nekriticka sekce
A:nA <+ nB+1 By:nB <+ nA+1
As: await nB = 0 or nA < nB Bs: await nA = 0 or nB < nA
Ay kriticka sekce By: kriticka sekce
As:nA 0 Bs: nB «+ 0
- J
Obrazek 3: Bakery algoritmus (zékladni).
4 N

Sdilend pamét
pole[l, ..., n] < [0, ..., 0]

Proces i
opakuj:

Ali
A2Z
A3Z

A4Z
A5Z

nekriticka sekce
pole[i] < max(pole) + 1
pro vSechna j rlizné od i:

await(pole[j]=0 or pole[i] < pole[j] or (pole[i] = pole[j] and i<j))

kriticka sekce
pole[i] + 0

Obrézek 4: Bakery algoritmus pro n procesti.

2.3.4 Lamportiv Bakery algoritmus

Oproti predchozimu se vzdy vi o pripadnych kolizich, kde rozhoduje id procesu. Skutecné
lze pouzit (napf. implementace vzdjemného vylouceni tam kde HW nenabizi synchroniza¢ni

primitiva).
4 N
Sdilend pamét
wantA, wantB « false
turn < A
A B
opakuj: opakuj:
A7 nekriticka sekce Bi: nekriticka sekce
As: wantA <« true B>: wantB <« true
As: while wantB Bs: while wantA
Ag: if turn =B By: if turn = A
As: wantA <« false Bs: wantB « false
As: await turn = A Be: await turn = B
Az wantA < true B;: wantB <+ true
Ag: kriticka sekce Bg: kriticka sekce
Ag: turn +— B By: turn < A
A1o: wantA <« false Big: wantB <« false

-

J/

Obréazek 5: Lamportuv Bakery algoritmus pro n procesu.

Formalizace toho kdy lidé ¢ekaji ve fronté na chleba s ocislovanymi listecky. Bud’ mij liste¢ek
mé nejmensi ¢islo nebo tam jsem jediny. Velmi elegantni feSeni. Nutné kazdé vldkno néjak
jednoznacné (idedlné néjaké ID) pro pripadné porovnani téch vldken (posledni podminka v tom
algoritmu).

2.3.5 Dalsi algoritmy

Existuji i dalsi algoritmy, které se déle pouzivaji, ale jsou slozitéjsi. Algoritmy se realné

neimplementuji uzivaji se jiz implementované n nchronizac¢ni primitiva.
eimplementuji, ale po aji se lementované nebo synchronizac tiva

2.4 Synchronizacni primitiva

2.4.1 SloZené atomické akce

Jsou to ,nizsi“ operace nez synchronizaéni primitiva typu lock nebo semaphore. Existuje jich

nékolik raznych (my jich probereme 5), délaji zhruba to samé. Je k nim mozné napsat co délaji

(nejlip formou pseudokdédu). Dulezité si uvédomit, ze se to provede celé bez pierusSeni.

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

1.

AN

test-and-set

swap

compare-and-swap

load-1link / store-conditional

bool lock = false

while(testAndSet(&lock))$
// empty cycle

3

// --- KRITICKA SEKCE ---
lock = false

int lock = ©; // @ = volno, 1 = obsazeno

while (!CompareAndSwap(&lock, 0, 1)) $
// Cekame, dokud lock neni ©

3
// --- KRITICKA SEKCE ---
lock = 0;

Kritickd sekce za pomoci compare-and-swap.

2.4.2 Zamek (lock, mutex)

fetch-and-add — pouzili bychom ¢itac¢ a frontu kdo je na radé

Nejjednodussi synchronizacni primitivum. Muze vzniknout problém s prehnanou synchronizaci.

A W N R

nekriticka sekce
lock.lock()
kriticka sekce
lock.unlock()

2.4.3 Semafor

® Python

M4 stavy 0 az n. Poskytuje 2 operace: cekat (dekrementace) P a signalizace (inkrementace)

V. Funguje jako chranény citac¢ za pomoci zamku. Pro implementaci neni vyzadovano aktivni

cekani. Férovost vyresime tak, ze ¢ekajici procesy jsou ve fronté.

Jako nejjednodussi binarni semafor mtzeme brat zamek.

semaphore = 1 # sdilena pamét “® Python

nekriticka sekce
semaphore.wait()

kritickd sekce

o U A W DN PR

semaphore.signal()

2.4.4 Monitor
Nejvice strukturovany synchroniza¢ni nastroj. V dost jazycich se nevyskytuje (mé ho Java a

C#, tfeba Python ne). Kéd kritické sekce se schova do monitoru (velmi jednoduché reseni).

m = monitor(): ® Python
operation criticalOperation():

kritickd sekce

1
2
3
4
5 nekriticka sekce
6

m.criticalOperation()

2.4.5 Podminéna proménna

waitC vzdy zablokuje a ¢ekdm az mé nékdo zavola

2.4.6 Bariéra

Misto v programu, kde se musi sejit vice procesu a az poté jdou spolecné déle. Vice moznosti
jak to udélat (linearni, stromova, motylova).

2.4.7 Threadpool

Néjaka skupina (pool) vldken, kterd se prifazuji na vyzadani. Kdyz to vldkno je volné, tak se
vycisti a pfedd se mu novy tkol. Obvykle je totiz méné vlidken nez tikoli.

2.5 Synchronizac¢ni problémy

Typické problémy vyskytujici skrz rizné prakticka aplikace, primarné v operacnich systémech.
Problémy i jejich feSeni je obecné, takze se da napasovat na riazné konkrétni priklady a neni
nutné nic vymyslet znovu.

2.5.1 Producent a konzument

Casto se vyskytujici problém, ve kterém mdame 2 typy procesu — producenta (produkuje data)
a konzumenta (sbird a zpracovava data). Obvykle je od obou typu vice instanci. Komunikace
probiha pres buffer, ktery ma danou velikost n (teoreticky by mohl byt nekoneény a nékteré
véci by byly jednodussi, ale praxe takova neni). Pro kazdou polozku v bufferu plati, ze je
vyprodukovana a zkonzumovana praveé jednou.

Priklady jsou: event loop, stream, zpracovani vysledki, které jsou produkoviny pribézné. V
praxi tfeba tzv. event driven systems, kde program musi na néco reagovat (tfeba stisk klavesy

uzivatele).

Pro podminky rfeseni plati nékteré zasady. Pokud nékdo manipuluje (dodéva nebo ¢te) data z
bufferu, tka buffer neni v konzistentnim stavu = buffer musi byt ve vzijemném vylouceni.
Pokud je buffer prazdny a konzument chce data precist, musi pockat (obdobné u producenta).

10

producent ? Python # konzument ® Python

1 1

2 event = waitForEvent() 2 items.waitQ)

3 mutex.wait() 3 mutex.wait()

4 buffer.add(event) 4 event = buffer.get()
5 items.signal() 5 mutex.signal()

6 6

mutex.signal() event.process()

Vypis 1: Resent producent a konzument s nekoneénym bufferem

1 # inicializace “ Python
2 mutex = Semaphore(1)

3 items = Semaphore(Q)

4 spaces = Semaphore(buffer.size())

1 # producent ® Python 1 # konzument # Python
2 event = waitForEvent() 2 items.wait()

3 3 mutex.wait()

4 spaces.wait() 4 event = buffer.get()

5 mutex.wait() 5 mutex.signal()

6 buffer.add(event) 6 spaces.signal()

7 mutex.signal() 7

8 items.signal() 8 event.process()

Vypis 2: Reseni producent a konzument s bufferem o velikosti n
2.5.2 Ctenari a pisari
Opét jsou 2 typy procesu — pisari (zapisuji do néjakého mista) a c¢tendri (z onoho mista ¢tou).
Pisari musi psat ve vzajemném vylouceni, ale ¢tendri mohou ¢ist zaroven a kazdy pisar je ve
vzajemném vylouceni se vSemi ¢tenari.
Priklady: pristup k databazi, souboru nebo datové strukture.

1 # inicializace @ Python
2 readers = 0 # polet &tend¥u v mistnosti

3 mutex = Semaphore(l)
4

roomEmpty = Semaphore (1) # 1 pokud v mistnosti nikdo neni, @ jinak

pisari “# Python
roomEmpty.wait()
KRITICKA SEKCE pro pisate

A W N B

roomEmpty.signal()

#étenari “ Python
mutex.wait()
readers += 1
if readers == 1:
roomEmpty.wait() # kontroluje a zamyka jen prvni

mutex.signal()

KRITICKA SEKCE pro ctenare

O 00 N O U1 WDN PR

[N
[

mutex.wait()

11

11 readers -= 1

12 if readers == 0:

13 roomEmpty.signal() # posledni co odchidzi odemkne
14 mutex.signal()

Analogii pro specidlni pravidla pro prvniho a posledniho ¢tenare mize byt skupina lidi co vchazi
do mistnosti, kde je tma a prvni rozsvéci a posledni zhasne.

VylepSenou variantou je problém férovych ¢étenart a pisard. Pokud pisaf chce psat a porad
néjaky ctenar cte, tak mohou pisari vyhladovét = chceme aby méli pisari prednost. To prida
podminku, ze pokud chce néjaky pisar psat, nesmi zaddny novy ¢tenar zacit ¢ist (ostatni ctenari
své ¢teni dokonéi normélné). Viz kéd dale.

class Lightswitch: ? Python
def __init__(self):
self.counter = 0

self.mutex = Semaphore(l)

1
2
3
4
5
6 def lock(self, semaphore):

7 self.mutex.wait()

8 self.counter += 1

9 if self.counter == 1:

10 semaphore.wait()

11 self.mutex.signal()

12

13 def unlock(self, semaphore):
14 self.mutex.wait()

15 self.counter -= 1

16 if self.counter == 0:

17 semaphore.signal()

18 self.mutex.signal()

inicialiazce @ Python
readSwitch = Lightswitch()
writeSwitch = Lightswitch()

noReaders = Semaphore(l)

u H W N B

noWriters = Semaphore(l)

pisari @ Python
noReaders.wait()

readSwitch.lock(noWriters)
noReaders.signal()

KRITICKA SEKCE

readSwitch.unlock(noWriters)

o Ul A W N B

#étenari ® Python
writeSwitch.lock(noReaders)
noWriters.wait()
KRITICKA SEKCE
noWriters.signal()

N U A W DN PR

writeSwitch.unlock(noReaders)

12

2.5.3 Vecerici filozofové

Procesy v tomto problému pozaduji vice sdilenych zdroji = konkuruji si. Je zde 1 typ procesu,
ktery ma 2 operace — ji (vyzaduje zdroje) a premysli (nevyzaduje zdroj). Sedi u kulatého stolu
a mezi kazdou dvojici lezi 1 vidlicka a kazdy pottebuje k jidlu ony 2 vidlicky vedle néj. Vidlicku
smi vzdy drzet jen 1 filozof, vzdy muze nékdo jist (nesmi dojit k deadlocku), nikdo nesmi
vyhladovét (vyhladovéni) a v jediném okamziku musi byt umoznéno jist vice filozofim (lepsi
efektivita).

Obrézek 6: Vecerici filozofové vizualizace

1 # zakladni chovani filozofi @ Python
2 while True:

3 think()

4 get_forks()

5 eat()

6 put_forks()

Existuje nékolik korektnich verzi feseni:
1. Pouziti ¢isnika (footman), ktery eliminuje pocet filozofi, ktefi mohou jist (pokud budou
jen 4 nemuze dojit k deadlocku)
2. Dalsi feSeni je mit alespon 1 pravaka a 1 levaka, poté nemuze dojit k deadlocku
3. Reseni podle Tanenbauma ptitazuje filozofum stavy (eating, thinking, hungry) a pouziva
semafory, které indikuji zda filozof muze zacit jist. Toto feSeni neni idedlni nebot muze
dojit k vyhladovéni.

2.5.4 Morissuv algoritmus

Néco jako non-starve muter solution (zamek o ktery kdyz vldkno pozddd musi ho v koneéném
¢ase dostat) z knizky Little Book of Semaphores od Allen B. Downey z kapitoly 4.

mutex.wait() @ Python
rooml += 1

mutex.signal()

t1.waitQ)
room2 += 1
mutex.wait()

rooml -= 1

VO 00 N O U1 A W N B

13

10 if rooml == 0:

11 mutex.signal()
12 t2.signal()

13 else:

14 mutex.signal()
15 tl.signal(Q)

16

17 t2.wait()
18 room2 -= 1

19 # critical section
20 if room2 == 0:

21 tl.signal()

22 else:

23 t2.signal()

2.5.5 Problém kuraku

V tomto problému méame 4 vldkna — 1 agent a 3 kutaci.

Popis problému: kuiédci dokola opakuji ¢ekani na suroviny (tabak, papirky, sirky), smotani
cigarety a koufeni. Predpokldadame, ze agent ma neomezené vSech surovin a kazdy kurdk ma
neomezené od jedné suroviny. Agent opakované ndhodné vybird 2 ingredience a dava je k
dispozici kurdkiam (podle toho které vybere zvoli kufdka, kterému ingredience sta¢i k ubaleni
cigarety).

Analogie k praktickému problému je takovéa, Ze agent predstavuje operacni systém, ktery
alokuje zdroje a kuraci jsou programy, které zdroje chtéji a potrebuji.

Obecné se prezentuje vice ruznych verzi, které maji ruzné ndrocné reseni (pfipadné jsou
nefesitelné). Tady uvazujeme verzi, kde plati, Ze nemizeme modifikovat kéd (nastaveni)

agenta, ostatni omezeni nejsou.

agent “ Python
agentSem = Semaphore(l)

1

2

3 tobaco = Semaphore(@)
4 paper = Semaphore(0)
5

match = Semaphore(0)

Agent se v podstaté sklada ze 3 konkurentnich vldken — agent A az agent C.

1 # agent A @ Python 1 # agent B @ Python 1 # agent C ? Python
2 agentSem.wait() 2 agentSem.wait() 2 agentSem.wait()
3 tobaco.signal() 3 paper.signal() 3 tobaco.signal()
4 paper.signal() 4 match.signalQ) 4 match.signalQ)

Obvykla Teseni, kterd nas napadaji zde nefunguji. Nejcastéji se objevi problém deadlocku.
Regenim od Parnase je pouziti 3 vlaken navic zvanych pushers. Ti odpovidaji na signaly od
agentu a drzi si prehled dostupnych surovin, tak aby mohli zavolat vhodného kuraka.

1 # inicializace “ Python
2 isTobacco, isPaper, isMatch = False

3 tobaccoSem = Semaphore(0)

14

4 paperSem = Semaphore(0)

5 matchSem = Semaphore(0)
1 # pusher A # Python
2 tobacco.wait()

3 mutex.wait()

4 if isPaper:

5 isPaper = False

6 matchSem.signal()
7 elif isMatch:

8 isMatch = False

9 paperSem.signal()
10 else:

11 isTobacco = True

12 mutex.signal()

Probudi se kdykoliv se objevi tabdk. Pokud bude isPaper pravdivy, tak pusher B uz musel byt
zavolat a muze tedy signalizovat kurdka, ktery mé sirky. Pokud se to samé stane s isMatch,
zavola se kurdk s papirky. Nakonec pokud pusher A bézel prvni, vSe ostatni bude false a on
tedy signalizuje, Ze tabak je dostupny, ale nikoho nemiuze zavolat.

Pro ostatni 2 pushery je kéd obdobny.

1 # kurak, ktery ma tabak @ Python
2 tobaccoSem.wait()

3 makeCigarette()

4 agentSem.signal()

5 smoke()

Mohou nastat dalsi zobecnéné varianty tohoto problému. TtTeba pokud upravime agenta tim,
ze eliminujeme pozadavek, Ze agent musi ¢ekat po vybrani suroviny. V tomto pfipadé mize byt
na stole nékolik instanci jedné ingredience.

2.6 Navrh paralelniho systému

Lze rozdélit do nékolika krokt. Obvykle pred vytvarenim paralelniho systému mame ten systém
sekvenéni, pokud ne, tak prvné udélame sekvenéni feseni (je intuitivnéjsi a jednodussi). Dalsim
krokem je dekompozice (rozklad) na mensi ¢asti. D4 se délat podle tkolu (task decomposition)
— jaké tkoly mame, jejich zévislost (pomoci grafu) a nebo podle dat (data decomposition) — jak
rozdélit data pro konkurentni zpracovani, pottebujeme podporu u HW, typické pro SIMD a mé
dobrou horizontalni skélovatelnost.

Pipeline. Vzor pro dekompozici podle tikolit. Ukol jde rozdélit na vice po sobé jdoucich tkolu.
Vice tkolt pobézi najednou na jiny ¢astech dat. Napt. montazni linka na auta, proces extract-
-transform-load.

Paralelizace cykla (loop-level). Vzor pro dekompozici podle dat. Cyklus provadéjici dany
kol (nezévisle) pro iterovana data. Kazdou iterace muzeme provést paralelné se vSemi dalsimi.
Jde provést jednoduse treba s threadPool a nékdy provadi saim kompilator.

15

Mapovani. Vzor pro dekompozici podle dat. V kolekci dat na kazdém prvku provadime stejnou
operaci (néco takového jsme brali v Lispu a Paradigmatech programovani). Opét kazdy muzeme
provést paralelné. Podobné jak s cykly o odstavec vice, ale pristup je funkcionalni.

Fork/Join. Vzor pro dekomporzici podle dat. Cést zpracovan{ dat se d4 udélat paralelné na
¢astech dat a ndsledné potfebujeme zpracovat vysledky z téchto ¢asti (proto nazev fork a join).
Napft. paralelni merge sort.

Map/Reduce. Vzor pro dekompozici podlet dat. Nejdrive mapovani a pak agregace (redukce).
Podobné jako Fork/Join, ale z funkcionalniho pohledu.

0. Sekvencni reseni
1. Dekompozice (podle tikolu nebo dat)
2.

2.6.1 Fosterova metodologie

Vymyslel postup navrhu paralelniho programu.
1. Dekompozice — rozdéleni na mensi ¢asti
2. Komunikace — popis a zabezpeceni komunikace mezi ¢astmi

3. Aglomerace — shlukovani ¢asti do logickych skupin
4. Mapovani na zdroje — technicka realizace

Prikladem muze byt nasobeni matic nebo urceni Cetnosti slov v textu. Pro kazdy z téchto
prikladu je v prezentaci 07 rozpracovany krokovy navrh.

16

3 Distribuované systémy
Tady je zbylych 7-8 predndsek.

Distribuovany systém muzeme chapat jako specialni pripad paralelniho systému, jelikoz vice
autonomnich systémii spolupracuje na jednom tkolu. Mohou byt na jediném stroji, pripadné v
siti WAN i LAN, eventudlné i vice distribuovanych systému tvaricich se jako jeden (muzou se
retézit). Oproti paralelnim systémum maji nékolik rozdili:

o absence sdilené paméti,

o komunikace (jak, rychlost, latence, spolehlivost),

e synchronizace casu.

Priklady mohou byt: aplikace komunikujici s DB, IoT, BlockChain, Internet, ...

3.1 Architektura distribuovanych systému

Rozdil mezi SW architekturou a systémovou architekturou. Plno moznosti jak bude co udélana
a co se musi vyresit.

Klient-Server. Klienti pozaduji od serveru sluzby (ti je nabizi). Asi nejvic bézné. Pro nékoho
muze byt uzel A klient pro nékoho server (zalezi na ihlu pohledu). Obvykle po siti. Nevyhodou
je centralizace (kvuli serveru). Pro komunikaci klienta se serverem se pouziva API. Komunikace
formou request-response a probihd asynchronné. Napr. webové sluzby, databazové servery, e-
-mailové servery.

Peer-to-Peer. Zalozena na myslence, ze vsechny uzly si jsou rovny a znaji své sousedy. Tim
padem je systém plné decentralizovany. Stava se tedy snadno Skalovatelny a dynamicky (uzly
mizi a pribyvaji dle potfeby). Napf. blockchain, BitTorrent.

Vrstvené-Architektura. Systém rozdélen do logickych vrstev (obvykle jsou 3 — uzivatelské
rozhrani, logika aplikace, datovd vrstva). Obvykle jsou nezavislé a komunikuji mezi sebou.
Vrstvy komunikuji jen se sousednimi. Napt. vétsi webové aplikace (UT jako JavaScript, back-
-end tfeba C# a DB v MySQL).

Service oriented architecture (SOA). Snaha mit komponenty jako sluzby a znovu je
pouzivat. Vyhodou je vysoka modularita a dobra skalovatelnost.

Microservices. Néco jako neprovazand SOA. Jednotlivé microservices by mélo byt mozné
nasazovat nezdvisle. Clenéni byva udélano podle logiky aplikace. Dnes velmi populérni.

Event-driven architecture. Centralnim prvkem systému jsou udalosti. Jednotlivé kompo-
nenty je produkuji a nasledné konzumuji. Jsou na sobé plné nezavislé. Napf. chytra doméacnost,
IoT, Kafka.

Hybridni pristup. Kombinuje vice ruznych piistupt. Napr. BitTorrent, ktery ma prominentni
uzly slouzici jako ,servery*.
3.2 Komunikace v distribuovaném systému

V distribuovanych systémech nemame sdilenou pamét = musime komunikovat pres
posilani zprav. U zprav mdame razné trovné abstrakce, rizné protokoly. Jsou to klasické sité
jako jsme probrali diive (KMI/POS1 a KMI/POS2). V realité je to vrstveny model sité jako
ISO/OSI.

17

Budeme fesit véci, které jsou predevsim v aplikacni vrstvé (predevsim z ISO/OSI tam je to
jednodussi). V této vrstvé funguje napr. DNS, autentizacni/autoriza¢ni protokoly, komunikaéni
protokoly RPC a AMQP, ... Fyzicky prenos za nas tesi OS.

3.2.1 Midleware protokoly

Systém pro zpracovani zprav. Jsou 2 moznosti — perzistentni systém (drzi zprdv dokud neni
dorucena) a tranzistentni (docasny) systém. Odesilatel muze byt asynchronni (jen posle a
pracuje dal) nebo ruzné moc synchronni (potvrzeni prevzeti, potvrzeni prijeti piijemcem, ..).
Pristupy odesilatele a middleware muzeme kombinovat.

3.2.2 Remote Procedure Call (RPC)

Z pohledu procest neni vidét, Ze bychom néjak komunikovali pres sit’ (funguje prosté tak, ze
se volaji pfimo lokalni metody). O co jednodussi je myslenka, tak provedeni je ndro¢né (ruzné
adresni prostory, preddni argumenti/vysledki, jiné konvence, stroj muze vypadnout ze sité, ...).
RPC musi byt podporovano programovacim jazykem (u vSech béznych to je).

Provedeni z pohledu klienta. Klient netusim, Ze vola metodu ze vzdaleného objektu, pro
néj jde o lokalni voldni remoteObject.methods(arg). Middleware

Provedeni z pohledu volaného

Muze nastat fada problému. Pfedavani parametru — marshalling(unmarshalling). Vysledek jako
jednoduché typy je tplné bez prolbému, horsi jsou referen¢ni typy (nejhure ty slozité).

RPC funguje v nékolika variantdch (asynchronni, jednosmérné, multicast). Obecné ale RPC
tlaci, aby zpracovani bylo synchronni (¢ili pockdam si na zpracovani a navrat vysledku).

3.2.3 Dalsi mozZnosti komunikace

e MOC - obecné posilani zprav (message oriented communication). Prikladem muzou byt
roury (pipes). Jednosmérné spojeni vystup-vstup. V Pythonu jsou obousmérné. Sockety
jsou abstrakei portu. Ruzné operace pro klienta (connnect, send, close, ..) a pro server
(bind, listen, accept, ...). Sockety jsou jesté nad HTTP protokolem. Message queue jsou
fronty zprav. Jsou perzistentni. Napt. RabbitMQ. Message broker je centralnim mistem
pro vymeénu zprav. Ma pomérné rozsahlé moznosti. Napr. ApacheKafka.

¢ MOM — message oriented middleware

o MPIT — message passing interface

e IPC — inter-process communication

Nékolik riuznych modeli komunikace: request-reply, publish-subscribe, pipeline.

Vysvétleni multicastu a broadcastu. Overlay jako struktura nad siti (tree nebo mesh). Multicast
maé vice typu — flooding (uzel preposle vsem kromé zdroje, pozor na duplikaci) a edpidemické
protokoly/gossip (snaha informovat okoli ndhodnym vybérem).

e gRPC framework

e protobuf repository
e« RPC in Python

3.3 Koordinace a ¢as v distribuovanych systémech

Koordinace DS probiha na zakladé casu (typicky timestamp). Na ruznych uzlech by mohl byt
ruzny ¢as. V DS nemuze byt jednotny cas kvili ruzné dobé cestovani mezi ruznymi uzly (jsou

18

totiz ruzné typy spojeni). Obecné chybi globélni hodiny. Je rozdil mezi skuteénym casem a
logickym c¢asem.

Omezeni casu Poznamka 6

Cas se nikdy nevraci zpét! Rozbily by se tim timestamp na onom uzlu.

3.3.1 Skutecny cas

Nelze plné synchronizovat (tudiz se snazime synchronizaci jen snizit rozdil). Pouziti naivniho
algoritmu (viz nize) nefunguje, protoze: latence sité, mohlo by dojit k posunu dozadu, neni
spole¢ny referencni ¢asovy bod.

1. Klient K pozaduje UTC cas od serveru S
2. K pozada o cas S.

3. S odpovi svym aktudlnim casem t,.

4. K nastavi cas dle ¢,.

3.3.2 Cristianiv algoritmus
Mame klienta K a server S s ¢asem UTC. Server S nemusi byt nutné na nejvyssim autorita-
tivnim levelu, jen je na vysSsi trovni nez klient (jinak to nedava smysl).

K pozada o cas S a ulozi si cas pozadavku ¢,
S odpovi aktalnim casem ¢,
K si ulozi ¢as prijeti ¢y

Ll

visledny ¢as K: t, + 254
Cas z tohoto mize byt celkem nepresny. Muzeme tento algoritmus zopakovat x-krat a z toho

udélat primér nebo median pro zisk lepsiho vysledku.

3.3.3 Network Time Protocol (NTP)

V praxi dost Casto pouzivané. Zakladné podobné Cristianoveé algoritmu, ale lépe odhadujeme
zpozdéni zprav a na zakladé toho dostaneme presnéjsi ¢as. Centralni autoritou je UTC.

K pozada o cas S v case t;

S prijme pozadavek v case t,

S posle odpovéd's (aktudlnim) casem ¢4

K ji ptijme v Case t,

probéhne odhad offsetu’ K viadi §: © = t, 4 et tlatal 4

odhad zpozdéni zprav: 6 = M

N O W

K eventualné upravi rychlost ¢asu pro srovnani
Vypocet © a 4 se provadi vicekrat (pro lepsi presnost). Pokud by K byl napted oproti S (zaporné

©), tak se ¢as na K zpomali. Pro nastaveni ¢asu na K se pouzije minimélni ¢.

3.3.4 Reference Broadcast Synchronization (RBS)

Distribuované feSeni pouzivané v bezdratovych/senzorovych sitich (IoT). Cilem zde neni mit
skutec¢ny presny cas, ale shodnou se na stejném v ramci sité. Predpoklada se stejna rychlost
prenosu mezi vSemi zatizenimi. Uzly si pouze ukladaji offset, neupravuji svij cas.

1. Uzel u posle broadcast zpravu m (referencéni impulz), kterd to celé zacne

0 kolik jsou lokaln{ hodiny K rozdilné oproti ¢asu serveru S. Muze nabyvat i zdpornych hodnot.

19

2. Uzly p a q ulozi po obdrzeni casy prijeti ¢, a ¢,

3. Uzly p a g si vzdjemné poslou zpravu s casem piijeti m (tedy ¢, a t,)

4. Uzly p a ¢ z dodaného ¢asu vypocitaji offset proti druhému uzlu

5. Casem vysledky mohou byt neaktudlni kvili driftu (prameéry, linedrni regrese)

3.3.5 Logicky cas

Skutecny cas ptrinasi celkem dost problémt a mize ndm stacit ,méné“. Logicky cas je néco jako
spravné usporadani operaci (operace a nastala po operaci b). Takovou operaci muze byt to, ze
odesldni zprdavy musi probéhnout pred jejim zpracovanim (tzv. koncept predchézeni).

3.3.6 Koncept predchazeni (a — b)

Byl predstaven Lamportem v roce 1978. Jednd se o tranzitivni relaci (nikoliv tplnou), takze
pokud plati @ — b (¢teme jako a predchdzi b) a b — ¢, pak musi platit a — ¢. Pokud jsou 2
udélosti v odlisnych procesech, které nesdili zpravy pak x — y neni pravda, ale ani y — z neni
pravda.

Tyto pravidla jsou dobfe vidét na vizualizacich.

e Clének - Lamport, logicky cas

e Clanek - Ricart, Agrawala, vzdjemné vylouceni

o Apache zookeper
e Blogy o ¢ase v DS
e Blogy o ¢ase v DS vol. 2

3.3.7 Lamportav algoritmus

Lokalni hodiny jsou vnimany jako ¢itac (za kazdé provedeni operace +1). Citac se zved4 pii:
o vykondani lokalni operace,
o pred odeslanim zpravy,
o pri prijeti zpravy s vyssi hodnotou ¢itace (tam se bere vyssi hodnota z hodnoty prijaté a
hodnoty moji zvysené o 1).

3.3.8 Vektorové hodiny

Kazdé udalosti @ muzeme prifadit ¢asovou hodnotu C(a). Potom plati a — b, tak C'(a) < C(b).
Naopak NEplati, ze pokud C(a) < C(b), tak a — b (nepopisuji kauzalitu).

Vektor hodin C je v kazdém procesu. C,[i] je lokaln{ logicky ¢as procesu i. Cj[j] = k znamena,
Ze proces ¢ vi, ze proces j vykonal k operaci. Pokud hodiny neni mozné porovnat jedné se o
konkurentni operace. Proces ¢ se dozvi o zméné hodin procesu j pouze pokud od néj dostane
zpravu (kde jsou jeho hodiny).

Plati nasledujici usporadani:
C; < Gy pokud Vi : Cyli] < Gyi]

Gy < G, pokud Gy < Gy a Gy # Cy

20

https://dl.acm.org/doi/10.1145/359545.359563
https://dl.acm.org/doi/10.1145/358527.358537
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
https://muratbuffalo.blogspot.com/2024/12/use-of-time-in-distributed-databases.html
https://sookocheff.com/tags/time/

How does the vector clock algorithm work? ¥l

[2,0,0] 3,000 [4,4,1] [5,4,1]
P1 ®—@ &
[1,0,0]
[2,0,0]
[2,3.1]
P2 —@ b
[0,1,0] [2,2,0] [2,4,1] [2,5,1]
[0,0,1]
P3 &
[0,0,1] [0,0,2]
TIME

@ -EVENTEXECUTINGRULEL () = EVENT EXECUTING RULE 2

Obrazek 7: Znazornéni vektorovych hodin.

3.4 Vzajemné vylouceni v DS

Vzhledem k tomu, Zze v DS musi procesy spolupracovat na dokonceni tkolu nastéva cCasto
situace, kdy musi pristupovat ke stejnému zdroji. Pro vylouceni nekonzistence je nutné zajistit
exkluzivni pristup k tomuto zdroji. Obecné se pouzivaji dva typy pristupu pristup zaloZeny na
tokenu a pristup zaloZeny na oprdvnéni a Teseni mohou byt centralizovand, decentralizovand
nebo distribuovana.

3.4.1 Centralizované resSeni

Nejjednodussim feseni, které ¢lovéka napadne je urceni jednoho uzlu (rozhodd¢i), ktery bude
rozhodovat o tom, kdo ma vyhradni pristup ke sdilenému zdroji. Funguje na principu fronty a
posildni zprav REQUEST a RELEASE.

Nevyhody: selhdni rozhodéiho (ostatni nemaji jak poznat), pretizeni rozhodéiho (bottleneck).

3.4.2 Distribuované reseni

Resenf je inspirovano Lamportovymi logickymi hodinami. Resent vyzaduje Uplné serazeni
udalosti v systému (u jakékoliv dvojice udalosti musi byt jasné, kterd z nich se stala prvni).
Pottebuje 2(IN — 1) zprav (kde N je pocet uzli) a vyuziva zpravy REQUEST a ACK.

Proces i chce vyhradni pristup

Zasle REQUEST(4,t) ostatnim (¢ je ¢asové razitko zpravy)

Proces j po prijeti odpovi Ack (nechce pristup nebo t < Cj), nebo prida ¢ do fronty zadosti.
Pokud ¢ekajici i dostane (N — 1) Ack, ziskdva pristup.

Gk W =

P1i ukoncéeni préce posle i ACK vsem ve své fronté.
Nevyhody: moznych N bodu selhani (opakujici se zpravy).

3.4.3 ResSeni tokenem

Nad siti se vytvori virtudlni kruh v némz si jednotlivé uzly preddvaji token (ten je préaveé jeden).
Plati vyhradni prace se zdrojem = drzeni tokenu. Kdyz proces obdrzi token zjisti zda-li chce
pracovat se dilenym zdrojem, pokud ano pracuje (po dokonceni odesle token dale), pokud ne
odesild token déle ihned.

Tento pristup ma vlastni problémy — ztrata tokenu (pfi vypadku uzlu nebo nedoruceni zpravy),
nutnost udrzovat informaci o kruhu kvali vypadku nasledovnika.

21

W Token
Co
O
Obrézek 8: Vzajemné vylouceni pomoci tokenu.

3.4.4 Decentralizované reseni

Prsistup je zalozen na hlasovani. Kazdy sdileny zdroj ma N replik, které vzdy maji svého
koordinatora, ktery slouzi k vyhradnimu pfistupu. Pokud chce uzel pristupovat ke sdilenému
zdroji potfebuje vétsinu hlast m > % od koordinatori. Pokud byl pristup zamitnut bude uzel
zédat znovu po nahodném case. Problém nastava pri vypadku koordinatora a jeho resetovani,
muze totiz nekorektné pracovat s tim jaky hlas a komu uz udélil.

3.4.5 Zookeper

Regeni pouzivané v redlném svéte pro tyto typy problémi. Jednd se o cely (centralizovany)
koordinacni systém. Poskytuje vzajemné vylouceni, volbu lidra, monitoring, zotaveni z chyb.

3.5 Lidr a jeho volba

Lidr je néjak vyznamny uzel. Ma nékolik typickych tkoli: komunikace s uzivatelem, koordinace,
vzajemné vylouceni, atd. Na tom kdo je leader se musi shodnout vSechny uzly. Lidii se v
pribéhu ¢asu mohou ménit. Casto je toto chovani od systému vyzadovano navenek.

Predpokladt pro leadera je nékolik:
e vSechny uzly maji 10 (predesim pro volbu, preferujeme vétsi)
e vsichni o vSech vi
 uzly mohou vypadnout (u bézného uzlu nevadi, u leadera musi byt néjak vyteseno)

3.5.1 Bully algoritmus

Pracuje na principu ,,silnéjsi vyhrava“. Kandidujici uzly jsou:
o ty které zjisti, ze leader nereaguje
e nové prichozi uzel
e silngjsi muze prevzit kandidaturu.

Kandidati maze byt logicky v né&jaky ¢as vice. V nejhorsim pifpadé O(n?) zprdv. Pokud dojde
k rozdéleni sité algoritmus selze.

22

Bully Algorithm

2 2 2

D @ D o !
Electly /® Election
3

0S50 O¢-@ ®

Election
Node 3 initiates the election Node 4 responds OK, Node 4 initiates the election
to become the leader 9 making Node 3 back off to become the leader

Response

Coordinator

2
1 @ 1 Q Leader Node
/:\ No Coordinator
: Response Coordinator
Y ® NG)
Q Node 5 is still down and Node 4 becomes the Leader and sends a
doesn't respond coordinator message to other nodes

Obrézek 9: Bully algoritmus pro volbu leadera.

1. Uzel zacne poslanim zpravy election(id) vSem uzliim, které maji vyssi id nez on sam

2. Uzel, ktery obdrzel zpravu bud’ neraguje nebo prebird kandidaturu (mé vyssi id) a odpovi
oK

3. Postupné se opakuje a jediny, kdo zustane se stdva leaderem (nejvyssi id), coz musi vSem
oznamit (zprédva COORDINATOR).

3.5.2 Ring algoritmus

Je to tzv. logicky kruh (overlay). VSichni musi znéat nésledovniky i dalsi uzly. Volby zahaji uzel
(uzly), které zjisti Ze leader nereaguje, takze postupné kandiduji vsichni bézici. Vzdy O(n) zprav.

Zacina se u uzla, které zjisti ze leader nereaguje a ti vyhlasuji volby, které probihaji nasledovné:
1. Uzel posild zpravu election(id) svému nasledovnikovi (pokud nefunguje, tak ho preskoci)
2. Uzel ktery obdrzi zpravu, tak ma 2 moznosti — pokud zprava neobsahuje jeho id, tak ho
pridé a posle dal (tim se dostava do voleb) nebo pokud obsahuje, tak posle zpravu leader
se stejnym seznamem (uz ten seznam u néj musel jednou byt)
3. Az to takto obéhne kolecko (vlastné 2x), tak se leaderem stava ten s nejvys$sim id (ten se
to sém dozvi z toho seznamu).

23

Ring Algorithm
ses ; /\fﬁcB::\‘::?\ 554
@)77 usea 2 \(5)‘J NEW LEADER

2<5

INITIATOR
NODE

Obrézek 10: Bully algoritmus pro volbu leadera.

3.5.3 Raft algoritmus

Zakladem pro dalsi algoritmy. Jde vlastné o takovy distribuovany log, do kterého vidi vScihni.
Funguje na vétsinovém kvéru. Umoznuje tolerovat chyby. Na pocatku algoritmu jsou vsichni
nasledovnici. Pokud dojde k rozdéleni sité, tak v kazdé ¢asti nastanou volby a Raft si s tim
dokéaze korektné poradit.

Mame 3 stavy uzla — lidr, ndsledovnik o kandiddt.
Nékolik stézejnich pojmu — term, timeout, hearbeat, split-vote.

Co plati? V kazdém termu je pouze jeden lidr. Termy jsou c¢islované od 0. Leader musi v
pravidelnych intervalech posilat heartbeat, aby se védélo, ze zije. Pokud by se uzly do timeoutu
neshodly nastanou nové volby.

Volba lidra

1. Volby vyvola nésledovnik pokud mu neptijde heartbeat od lidra — zvysi sviij term, stane
se kandidatem, hlasuje pro sebe a pozada vSechny ostatni o hlas (poslani zpravy)

2. Pokud uzel obdrzi zadost o hlas tak — pokud nehlasoval a nemé novéjsi log (vice commi-
tovanych operaci) nez uzel ktery poslal zddost, tak hlas potvrdi nebo pokud hlasoval
ignoruje

3. Kdyz kandidat dostane vétsinu hlasu (z celkového poctu uzlu), tak se prohlési leaderem

Vsechno o tomto algortimu od autora (¢lanky, knihovny v raznych jazycich i vizualizace) je
tady na webu.

3.5.4 Algoritmus pro ad-hoc® sité

V tomto ptipadé jsou kandidati na lidra vsichni a je vybran ten, kdo nejlépe plni pozadavky.
1. Ten kdo chce byt lidrem posila ELECTION svym sousediim
2. Ten kdo obdrzi ELECTION pokud nema rodice, tak si na jeho misto nastavi odesilatele,

preposle vSem ostatnim a po potvrzeni od nich potvrdi i on
3. Poku uz rodice ma, tak jen potvrdi prijeti

*Obvykle bezdritova sit’ bez centralniho bodu a s proménlivou topologii

24

https://raft.github.io/#implementations

4. Timto vzniké strom

3.5.5 Dalsi algoritmy

e Zookeper

o Chang-Roberts (upraveni Ring algoritmus)

o Gossip protokoly (napodobuje §ifeni drbu nebo virt v populaci)
o Proof of work nebo Proof of stake (pro velké sité)

3.6 Chyby v distribuovanych systémech

Chyba je selhani ¢ehokoliv v systému (uzlu, hrany, kanalu, ...). Prosté je to jiné nez zamyslené

vvvvvv

tolerovat chyby.

Asynchornni systém neumozni chyby detekovat, protoze nevime jestli probiha vypocet a ceka
se nebo uzel vypadl. U ¢astecné synchronniho s timeouty to mozné je.

Zakladni 4 vlastnosti:
1. dostupnost (déva odpovéd)
2. bezpecnost (chyba nezpusobi katastrofu)
3. spolehlivost (bézi nepretrzité v daném ¢asovém tseku)
4. udrzovatelnost (snadnost opravy v pripadé chyby).

Obcas problémy s rozlisenim dostupnosti a spolehlivosti.

Metriky pro méfeni chyb (z jejich hodnot muzZeme vydcist, které vlastnosti jsou dobte splnény):
e MTTF — meain time to failure (¢as po kterém dojde k chybé)
e MTTR — mean tim to repair (¢as nutny k oprave)
e MTBF — mean time between failures (¢as mezi vypadky)

Chyba Poznamka 7

Vsechny predchozi definice a odstavce vazduji aby byla chyba presné definovana.

3.6.1 Klasifikace chyb

Rozlisujeme podle trvani nebo podle projevu. Poméaha rozlisit jak jsou chyba zivazné, pripadné
jaky zptisob je vhodny pro jejich resend.

1. prechodna — objevi se jednou a zmizi
2. preruseovana — objevuje se a mizi opakované
3. trvala — trva do vyreseni

pad — uzel vypadne, jinak funguje bezproblému
vynechéni — selhdni v poslani/prijeti zpravy
¢asovani — odpovéd mimo dany c¢asovy ramec (pozdé)
chyba odpovédi — odpovida Spatné

CU W =

nihodné (byzantskd) chyba — odpovidd ndhodné a v ndhodném case

25

3.6.2 Byzantské chyby

Chyba uzlu, kterou ostatni nepoznaji (jedna z nejhorsich variant). Uzel se chova ke kazdému
jinak. Dobré znazornéni na problému byzantskych generdli (koordinované utoky/ustupy a
(ne)poctivost generali). Jednd se o redlny problém. muZe jit o bug i Gtok na sit.

Systém odola byzantské chybé pokud:
e posle-li poctivy uzel hodnotu X, systém se shodne na X
¢ vSechny poctivé uzly se shodnou na X

i i
~
F71 ¢ | 471
¥ ¥

Obréazek 11: Problém byzantskych generali.

3.6.3 Detekovani chyb a redundance

Typy chyb sefazené od nejméné zavazné po nejvice zavazné.

Fail-stop — spolehlivé detekovatelné, zname stav uzlu

Fail-noisy — eventualné spolehlivé detekovatelné, chyba je zjevna

Fail-silent — nelze rozlisit pdd a vynechéni (nezndme stav uzlu)

Fail-safe — o chybé nevime nic, ale nezpusobi skodu (uzel se prepne do tzv. fail-safe mdodu)
Fail-arbitrary — o chybé nevim nic a nelze ji ani spolehlivé detekovat

Redundance umoznuje tyto tolerovat chyby. Muze ji byt nékolik typi, které jsou odolné vudi
rozdilnym typum chyb (informacni, ¢asova, fyzickd redundance).

Jde o pristup kdy kazdy uzel ma 3 repliky. Pokud se 2 shodnou povazuje se vysledek
za korektni (¢ili az 1 muze selhat). Muze vézt az ke [replikdm, kdy systém prezije az k
chybnych uzli (potom fikdme k-fault tolerance).

3.7 Chord Systém

Néco jako distribuovand hashovaci tabulka (takze rezim kli¢-hodnota). Jednd se o peer-to-peer
systém, ktery méa kruhovou strukturu (ring). PouZivaji se m bitové klice (obvykle 128 nebo
160), kdy id uzla jsou také z tohoto prostoru. Dohromady 2™ kli¢t.

Kli¢ k spada pod uzel s nejmensim id spliujici id > k. Takovému uzlu fikdme nasledovnik a
znacime ho suce(k).

26

114 | Finger table
214
39 M
419 v
5118 R
Actual node 31,-o i a\’oo
. B 219
1 39
2 414
4 2 a5\ Tt e=—________- - 5120
5114 Vi Resolve k = 12
58 from node 28 {63
%5 L@
[N
24; AN
(N 2 11
3 14
23 Resolve k = 26 - 4 [18
from node 1 o] 5 128
1)
1128 >
2 [28 _
328 3 Hs
41 .
’ A2 3 [18
519 s 4 120
— y 3 5128
3 [2 17—16—157 1118
4 |2 2 118
514 1120 318
2 [20 4 28
328 511
428
51 4
_ J

Obrazek 12: Chord systém.

Poznamka 9

Uzly evidujici informace i o predchudcich.

Je nutné vyresit jak efektivné hledat spravny uzel pro kli¢ k. Naivni pristup tika, ze uzel p
vi 0 svém néasledovnikovi succ(p + 1). V tomto pripadé pokud p obdrzi pozadavek na Kkli¢
k, tak pozadavek preposle dokud neplati pred(p) < k < p a poté spravny uzel odesle své id,
protoze jemu nalezi kli¢ k. Tento pristup v priméru pottebuje projit % ringu (coz je neefektivni
— slozitost O(n)).

Efektivnéjsi feSeni je pouzit zkratky, tzv. finger tables FT,; (pro uzel s id). Jde o vyhledavaci
tabulku s velikost{ max m. Plati FT4[i] = succ(id +2"7!) neboli i-ty zdznam v tabulce ukazuje
na naslednika vzdéaleného alesponi o 2°~! pozic. Pro udrzeni v kruhové struktuie se pouziva
modulérni aritmetika. Pro korektni preposlani klice k z uzlu p na uzel q vyuzijeme:

q=FT,[j] <k < FT,[j+1]

Tento vylepSeny pristup vyzaduje O(log(N)) krokt, coz je znacné zlepsSeni.

Udrzeni této tabulky aktualni se provadi pomoci neustale opakované operace. V ni uzel q
opakované kontaktuje uzel succ(q + 1) a vyzada si pred(succ(q + 1)), pokud se tato hodnota
rovnd ¢, pak je vSe spravné. Pokud ne, tak nékdo novy vstoupil do ringu ¢ < p < succ(q+ 1)
a je nutné aktualizovat zdznamy tak, ze FTq[l] = p. Poté si jesté p zkontroluje zda ma ¢ jako
predchudce (pripadné nastavi ho). Taktéz se pravidelné kontroluje zda predchudce Zije, pokud
ne je nastaven na unknown. Tyto procedury zajistuje ze Chord je porad s velkou vétSinou uzli
v konzistentnim stavu.

Pokud se chce uzel p pridat do systému je postup jednoduchy. Uzel p kontaktuje prislusny uzel
a zazada si o succ(p + 1). Po odpovédi se p muze pripojit do kruhu.

27

Realné fungovani

V redlném svété by mohlo dochazet k tomu, ze geograficky blizké uzly maji dost odlisna id.
Systém se proto snazi uzlim blizko sobé geograficky priradit blizké hodnoty id. Pro nasledniky
i zdznamy v tabulce je zavedena redundance — ¢ili nemaji jen jednoho (jeden zdznam), ale je
jich r.

3.8 Shoda v distribuovaném systému

Systém se musi shodnout na fadé veci (vysledek, dalsi akce, stav, ..). Pokud funguje bez chyb
je to trividlni, s chybami (hodné zalézi na typu a zévaznosti) se situace komplikuje. Pro shodu
potfebujeme: synchronni systém nebo omezeny cas na zprav a poradi zprav nebo multicast.

Poznamka 10

Shoda v DS neni vzdy mozna.

3.8.1 Redundance

Pro reseni téchto problému je zavedena redundance, kdy tlohu jednoho uzlu prebira skupina
uzlt. Existuji dva zdkladni typy:
1. primdrni zaloha — hierarchicka skupina, pri vypadku primarniho (te nvykonava vSechny
write operace) prevezme roli zdloha
2. replikovany zapis — ve skupiné maji vsichni stejné role (plocha skupina), nemaji kriticky
bod, je nutna koordinace

Skupina je odolnd proti chybam pokud vsSechny bezchybné procesy vykonavaji stejné
operace ve stejném poradi.

3.8.2 Algoritmus Flooding consensus

Zakladni algoritmus pro shodu pracujici pouze s chybami fail-stop. Shoda se hledd v kolech,
kterych je f + 1, kde f je maximdlni pocet uzli, které mohou selhat (logicky f < N, kde N je
pocet uzla v DS).
1. V kazdém odesle kazdy uzel svuj aktudlni seznam navrhu (zacéind se s tim, kde je pouze
jeho vlastni névrh)
2. Uzel prijaté navrhy v kole sloudi se svymi navrhy
3. Kazdy uzel determinsticky ze seznamu narvhu vybere volbu podle predem dané funkce
4. Rozhonduti na zdkladé odpovédi:
1. Pokud nikdo nedostane vsechny, odpovédi zac¢ind nové kolo
2. Pokud vsichni dostanou vsSechny odpovédi, dojde k volbé vysledku a algoritmus
skonc¢i
3. Pokud jen nékdo dostane vSechny odpovédi, rozesle volbu, kterou ¢ekajici prevezmou
a konci se

3.8.3 Byzantské chyby podruhé

Méame n generdlti z nichz m je zrddnych. Jak toto vyfesit? Pri ndkresu feseni s postupné
zvySujicim se poctem generalu (2, 3, 4, 5, ..) se dostaneme k tomu, ze musi platit n > 3-m,
aby se systém shodl. Nevyhodou je exponencialni pocet zprav.

Existuji i dalsi moznosti reseni, které maji specifické predpoklady a omezeni:

28

HoneyBadgerBF T (digitalni podpisy)

Blockchain (cena)
MiniBFT (specificky HW)
Kryptografické protokoly (duvéra)

3.8.4 Raft algoritmus

Jednd se o moderni a Siroce pouzivany algoritmus (slouzi jako ndhrada Paxosu).Pracuje s fail-
-noisy modelem. Shoda systému probihd pomoci distibuovaného logu operaci (uzly tedy musi
byt ve stejném stavu). Skupina uzli ma lidra, ten rozhoduje o commitech do logu a v pfipadé
vypadki muze byt nahrazen. Vyuziva se vétSinové kvérum (n > 2 -m).

Stavy uzla: lidr, nasledovnik, kandidat.

Volba lidra byla zminéna uz diive. Je nutné jesté vyresit jako funguje commit do distribuovaného
logu.

Klient vzdy posilda pozadavek na lidra (pfipadné na néj muze byt presmérovan z jinéh uzlu).
Tedy lidr mé vzdy prehled o vSech operacich (i nevyfizenych). Kazdy pozadavek je zapsin
do logu ve formé (o,t, k), kde t je aktudlni term a k je index pozadavku o v tabulce lidra.
Raft garantuje, ze operace které prosly commitem byly provedeny vétsinou uzli a vysledek byl
navracen klientovi.

Prijeti nového pozadavku a distribuce logu
1. Po obdrzeni pozadavku lidr rozsiFi svuj log (délky n) o (o,t,n + 1)
2. Lidr cely log odesle vSem uzltim spole¢né s indexem posledni commitované operace ¢
3. Kazdy prijemce si sviij log upravi podle prijatého, potvrdiho lidrovi a zkontroluje, Ze
vSechny operace az do ¢ véetné byly provedeny (o zatim nemuze byt commitovano)
4. Po prijeti potvrzeni od vétsiny uzlu lidr vykond operaci o a navrati vysledek
5. Lidr nastavi c nan +1
6. Pri dalsim pozadavku si ostatni uzly zkontroluji ono ¢

3.8.5 Paxos algoritmus

Autorem je Lamport. Stejné jako Raft vyuziva fail-noisy model. Casto pouzivany, ale kompli-
kovany, takze byl nahrazen raftem. Stejné jako raft vyuziva vétsinové kvorum.

Typy procesu: client, proposer, leader, learner, acceptor.
Vnitini déleni uzlu: proposer, acceptor, learner.

Predpoklady pro fungovéni (slabé): DS muze byt nesynchronni, umoziuje nespolehlivé spoje,
poskozené zpravy jsou detekovatelné, operace jsou deterministické, nejsou povoleny ndhodné
chyby.

Jadro algoritmu funguje ve 2 krocich — faze prepare a faze accept. Pro navrh se vzdy vybira
nahodné cislo, které se pouzivd k rozhodovani v piipadé vice ndvrhiu (vétsi ¢islo vyhrava).
Névrhy podavaji proposers a acceptors pro né hlasuji (jeden uzel muze zaroven plnit vice roli).

[Viysvétlend asi v kniZce nebo spis zjednodusené na internetu/

3.9 Replikace a konzistence
Redundance ... vice vzdjemné nahraditelnych uzlt

Replikace .. Raft jako replikace stavu

29

Konzsitence ... repliky musi byt shodné

3.9.1 Replikace

Pro zvyseni spolehlivosti (pad uzlu, zni¢eni dat) a vykonu. Zahrnuje v sobé redundanci (protoze
replika vytesi pad originalu), ale ptinasi navic geografickou dsotupnost ¢i rozlozeni zatéze. Napt.
kesovani, CDN, DNS. Tyto vylepsSeni sebou ale nesou i negativa, predevsim jak udrzet vice uzla
(mist) v konzistentnim stavu.

3.9.2 Retdzova replikace

Uzly jsou usporddény do fetézce (hlava --» vnitini uzly --» ocas). Operace zépisu se provadi
na hlavu a operace ¢teni na ocase. Zapis se poté postupné propraguje od hlavy az na ocas.
Tento pristup zajisti silnou konzistenci (linearizovatelnost). Musime fesit spravu uzli a jejich
selhani, ve fail-stop modelu nasledujici:

e hlava — nahradi se nasledovnikem

e ocas — nahradi se predchudcem

o uzel uprostied — Tesi centralni uzel prepojenim retézce

e centralni uzel — nutna replikace retézce

Koncepéné jde o jiny pristup nez predchozi — neni zde lidr, ocas reaguje na ¢teni rovnou, pomaly

uzel muze tvorit bottleneck.

3.9.3 Konzistence

Konzistence nas zajima pri nékolika kopiich jednotlivé uzlu ¢i pii prolozemych read a write
operacich. Existuje nékolika typu, které kladou ruzné podminky pro splnéni (silné, eventualni,
sekvenéni, klauzalni, ...).

Silna (striktni) konzistence .. zmény propagoviny okamzité; jako kdyby vSichni reagovali
stejné

Sekvenc¢ni konzistence ... vysledny stav odpovida néjakamu sekvenc¢nimu poradi operaci

Kauzalni konzistence ... pokud plati a — b, pak vSichni vidi nejdiive vysledek a a az potom
b; u konkurenc¢nich (nekauzélnich) operaci to je jedno

Eventualni konzistence ... jednou dostaneme aktualni data, ale nikoliv hned (napt. keSovéni);
povoleni read-write konflikti; write-write konflikty zdlézi na implementaci

Kdy je konzistentni systém Poznamka 12

Pokud jednotlivé uzly DS reaguji (dostatecné) stejné.

3.9.4 Nékolik teorému na zavér

CAP teorém Teorém 13

Uvazujme DS s replikaci dat. Pozorovanim zjistime, Ze sitovym problémum a ndslednému
rozpadnuti sité se nelze vyhnout. Kdyz nastane rozpad mizZeme zachovat bud’ dostupnost
(avilability) nebo konzistenci (consistency), nikdy ne oboji.

30

PACELC teorém Teorém 14

Rozsiteni CAP torému. Jde o promyslenou zkratku P paritition, A avilability, C consis-
tency, E else, L latency, C consistency. Pokud dojde k rozdéleni P sité musime vybrat
mezi dostupnosti nebo konzistenci, jinak (bézny provoz) volime mezi latenci a konzistenci.

Rtizné varianty prosté podle vhodného rozdéleni pismen.

Napt. PostgreSQL distr. mé PC/EC u NoSQL je to dost rozmanité.

CALM teorém Teorém 15

Consistency as Logical Monotonicity. Rikd co miZeme mit bez drahé koordinace. Nedividme
se na vlastnsoti systému, ale na vlastnosti programu. Monoténni systém lze imple-
mentovat bez synchronizace pri zachovani konzistence. Monoténnost je pokud se
data pouze pridavaji a vrstvi na sebe (pokud se néco jednou piida uz se to nemuze zménit).

Monoténni (povolené) operace: pridani do seznamu, sjednocent, ...

Nemonoténni (zakdzané) operace: minimum, maximum, mnozinovy rozdil, ..

3.10 Globalni stav v DS

Globélni stav celého DS se skladd z lokdlnich stavi jednotlivych uzli a kanali mezi nimi
(zachycuje cely systém v jednom okamziku). Lokdalni stav uzlu (procesu) jsou hodnoty
proménnych, alokované zdroj a stav vykonavani programu. Udalosti v systému muzeme rozdélit
na 2 skupiny, na ty co se jiz staly a ty co se jesté nestaly.

Konzistence fezu C' (a - bAb e C) = a € C.

Posloupnost konzistentncih fezti ndm vytvari prubéh vypoctu v celém DS.

Globéalni stav DS v daném okamziku.

3.10.1 Chandy-Lamport algoritmus

Algoritmus umoznuje vytvorit snapshot (zjistit stav) DS bez nutnosti zastaveni DS.

1. Inicidtor ulozi svuj stav a poSle zprav s markerem snapshot request a za¢ne zaznamenavat
vSechny zpravy na dalsich kandlech
2. Proces obdrzi zpravu s markerem
zpravou, zacne sledovat stavy ostatnich kanalil
2. poprvé na daném kanalu: ulozi stav kanalu a posle jej inicidtorovi a kon¢in na ném
monitorovani
3. Proces s markerem dostane zpravu bez markeru — musi byt z okamziku pred snapshotem,
ulozi ji do stavu kandalu

Kanaly musi byt typu FIFO. Kanaly musi byt jednosmérné.

31

3.10.2 Dijkstra-Scholten algoritmus

Algoritmus zajistuje detekci ukonéeni. Uzel ma 2 stavy — aktvni nebo skoncil. Zpréavy SIGNAL
(vyzva pocitas/nepocitas?) a ACK (odpoveéd’ uz nepocitdm nebo se hlasim jinam). Algoritmus
vytvarri v redlném case stromovou strukturu. Algoritmus funguje pouze pro difuzni vypodéty,
coz jsou vypocty, které zacinaji u jednoho uzlu.

Budovani stromu:

1. Vytvoreni hrany rodi¢ — potomek pokud uzel A posle zpravu B a B byl do té doby pasivni,
uzel A se stava rodicem B

2. Kazdy uzel si udrzuje ¢itac, ktery rika kolik zprav poslal sousedum a jesté nebyly potvrzeny

3. Poslani Ack uzel posle rodic¢i pouze pokud on sdm je pasivni (dokoncil praci) nebo obdrzel
potvrzeni od vSech kterym sam poslal zpravu

4. Vypocet je v celém systému povazovan za ukoncsny pokud se koren stromu stane pasivni
nebo pokud ma ¢ita¢ korenu hodnotu 0

3.11 Distribuované transakce

Jednd se o transakce zahrnujici vice uzli v DS. Obecnd zména vice dlozist/systému (napft.
mazibankovni prevod, zapis do vice ruznych DB). Zaklada se na klasickych transakcich (nutnd
specialni primitiva). Drzet se ACID. Nejvice nds bude zajimat distribuovany commit, coz je
zavéreénd faze distribuované transakce. Takové zmnény se musi provést bud’ vSude nebo nikde
(prosté jako klasické transakce). Ke commitim je potfebny koordinator.

3.11.1 Jednofazovy commit

Vlastné se nejednéd o nic co by zarucovalo spravné provedeni. Jde o Uplné naivni feseni, kdy
koordinator posle commit vSsem uzliim instrukei a ti ji hned provedou. Jenze pokud vypadly
nebo k nim zprava nedorazi dostane se systém do nekonzistentniho stavu.

3.11.2 Dvoufazovy commit

Jiz se jenda o pouzitelné rozumné teSeni. Jsou 2 typy procest — koordindtor a ndsledovnici.
Nedokéze reagovat na selhdni koordindtora. Nejvice se pouzivd (napf. PostgreSQL PREPARE
TRANSACTION a COMMIT/ROLLBACK PREAPRED).

1. Koordinator posle vSem VOTE_REQUEST

2. Uzel na né¢j zareaguje pokud je pripraven tak VOTE_COMMIT, pokud ne VOTE_ABORT

3. Kooridnator pri obdrzeni od vSech VOTE_COMMIT zasSle GLOBAL_COMMIT (fikd uzlim Ze maji
lok&lné provést commit), jinak GLOBAL_ABORT

3.11.3 Trifazovy commit

Resf nedokonalosti dvoufdzového. Nikdy nelze volit rovnou COMMIT nebo ABORT. P¥ibyde tedy
novy stav a zprav (PRECOMMIT a PREPARE_COMMIT).

1. Koordinator posle dotaz jestli uzly mohou provést commit

2. Uzly odpovi YES nebo NO

3. V pripadé, ze koordinator neobdrzi od vsSech YES proces kondi, jinak rozesild zpravu
PRE_COMMIT, které zajisti zdpis do logu a uzamceni zdroji, ale operace se jesté neprovadi
a odpovéd’ uzli

4. Pokud od vSech opét pozitivni opovéd rozesild se samotné zprdva GLOBAL_COMMIT

5. Uzly provadi operace

32

Vote-request
Vote-abort
Commit Vote-request
Vote-request Vote-commit
WAIT
Vote-abort Vote-commit Global-abort Prepare-commit
Global-abort Prepare-commit Ready-commit

(ABORT) (PRECOMMIT) (ABORT) (PRECOMMIT)

Ready-commit Global-commit
y Global-commit y ACK
COMMIT COMMIT
@ (b)
G J

Obrazek 13: Stavy tiifazového commitu pro (a) koordinatora a (b) nésledovnika.

Pokud koordinator vypadne uzly se domluvime mezi sebou, bud ¢ekaji na zotaveni nebo
proces ukonci. Pokud vypadne nasledovnik, tak koordinator ¢eka a je vyzadovano zotaveni u
nasledovnika.

4 Blockchain

Umoznuje registrovani distribuovanych transakci, proto se také nazyva Distributed Ledger Tech-
nology (DLT'). Blockchain vsechny véci (datova struktury, operace) k tomu nutné implementuje.
Obecné pracuje s tim, Ze nepouziva diveéryhodnou centralni autoritu. Nemusi byt vzdy verejné,
ale mohou mit néjakou miru centralizace (hybridni) ¢i byt privatni.

Zaklady jsou v mnoha oblasatech: kryptomény (Bitcoin, Ethereum, Litecoin, ..), DNS, IoT,
smart contracts.

Uz z ndzvu vyplyva, Ze se jedna fetézec navzajem provazanych blokt. Kazdy blok obsahuje: data,
timestamp, hash dat (obvykle kryptograficky), hash predchoziho bloku (taky kryptograficky) a
eventudlné dalsi specifické véci. Prvni blok se nazyvéa genesis block a nemé predchudce (takze
nemuze mit ani jeho hash) — v tom je odlisny. Hash dat v bloku musi byt snadné ovéfit (takze
néco jako SHA-256).

4.1 Bloky

Maji rekurzoivni vlastnost (kazdy obsahuje hash predchoziho kromé genesis bloku). Diky
tomuto neni mozné predchozi bloky ménit a narusit strukturu. Pfi zméné bloku nebude sedét
hash ve vSech nasledujicich, takze je to snadno odhalitelné. Kazdy uzel muze mit kopii celého
blockchainu, ale sta¢i mit shodu na poslednim bloku. Muze existovat vice konkurencénich bloku,
coz vede k vétveni a pravdépodobnostni volbé.

Vytvoreni nového bloku vyzaduje velké mnozstvi prace (model proof of work):
1. zajemce posbird transakce do bloku
2. sestavi zaklad bloku
3. musi blok doplnit tak, aby vyfesil vypocetné ndrocnou tlohu (tdloha ma upravitelno
obtiznost na zdkladé aktudlnich moznosti sité)

Ten kdo to zvladne prvni ziskd odménu za blok. Néasledné ovéreni toho, ze blok je validni musi
byt trividlni. Problémy se mohou vyskytnout se spotfebou, tvrbou pooli ¢ rychlosti.

33

Zména bloku Poznamka 18
Zmeéna jediného bloku by vyzadovala prepocitani vSech dalsich, coz je vzhledem k nakladtim

na vytvoreni kazdého nerealné.

Problémy pristupu PoW se snazi vyresit proof of stake. Misto vytvoreni velkhé mnozstvi
prace se pozadavuje zdstava.

1. zéjemce nabidne zastavu (kryptoménu daného blockchainu)

2. systém vybere ze zdjemciui

3. vitéz posbira transakce a pripoji je do sité

Ostatni validatori oveéti platnost bloku (za to ziskavdji odménu). Pokud je blok OK vitéz ziska
odménu, pokud nikoliv tak ztrati zastavu a je v siti penalizovan.

Vzhledem k tomu, ze podvod vyzaduje mit hodné prostfedkt jednalo by se v podstaté titok na
sebe sama. Nevyhodou je centralizace bohatstvi a moci.

4.1.1 Dalsi typy shod

Delegated PoS — volena mala skupina validatoru, hlas ma vahu podle majetku
Proof of Authority — mald duvéryhodnd skupina validdtoru

Proof of Elapsed Time — nutny duvéryhodny HW a robustni systém préace s Casem

Practical Byzantine Fault Tolerance

4.2 Merkle tree

Jedné se o specialni datovou strukturu hasového binarniho stromu. Slouzi k verifikaci obsahu
velkych datovych struktur. Pouziva se v: Bitcoinu, Ethereu, gitu, BitTorrentu, btrfs, ...

4 N
Sdilend pamét
nA, nB < 0
A B
opakuj: opakuj:
A1: nekriticka sekce Bi: nekriticka sekce
A:nA <+ nB+1 B:nB+ nA+1
As: await nB = 0 or nA < nB Bs: await nA = 0 or nB < nA
Ay kriticka sekce By: kriticka sekce
As:nA 0 Bs: nB < 0
G J

Obréazek 14: Merkle tree.

4.3 Problémy blockchainu

Poskladan z 5 vrstev:
1. Infrastruktura (HW)
Sitova vrstva — zména uzl, sifeni a ovéfeni informace
Datova vrstva — bloky a transakce
Shoda —
Aplikac¢ni nastavby — kryptomén, decentralizované aplikace, smart contracts

G W

Resi se konzistence, bezpecnost a predevsim anonymita.

34

4.4 Hrozby blockchainu

Ovladnuti sité (51% uatok)

Sybil(a) ttok — vydavani se za vice ucastniki

Eclipse ttok — oddéleni uzlu

Utoky na podptirné vrstvy

Utoky na aktuélni kryptografii pomoci kvantovych pocitaci
DDoS

Socialni inzenyrstvi

IR

4.5 Bitcoin

Autor je Satoshi Nakamoto (synonym) jehoz redlnd identita je nezndmd. Vymysleno jako
alternativa k fiat méndm. Bitcoint je fixni pocet (21 milion). Na zac¢atku odména 50 BTC v
bloku, ale kazdych 210 000 bloku (& 4 roky) nastédva havling (ptleni odmén), kdy ocekdvany
konec je asi v roce 2140.

1 BTC = 10® Satoshi

Jako hashovaci funkci pouzivd SHA-256 a podpis transakei zajistuje ECDSA. Novy blok se
vytvori asi kazdych 10 minut. Diive velikost 1 MB, dens asi 4 MB.

4.6 Ethereum

Zalozil ji Vitalik Buterin v roce 2015. Zamér byl takovy, zZe blockchain muze poskytovat vice
nez jen ménu, takze pridal decentralizované aplikace, smart contracts. Narodzil od BTC nema
limit, ale pouziva jiné metody pro omezeni inflace.

Jako hashovaci funkci pouziva Kecak-256 (modifikovany SHA-3) a pro podpis transakeci stejné
jako Bitcoin ECDSA. Puavodné vyuzival PoW, v roce 2022 prechod na PoS, coz snizilo spotiebu
0 99 %.

35

	1 Obecný úvod
	1.1 Zkouškové otázky
	1.2 Články ke zkoušce
	1.3 Pár pojmů na začátek
	1.4 Flynnova taxonomie
	1.5 Kdy a proč to dělat?
	1.5.1 Škálování

	1.6 Zrychlení výpočtů

	2 Paralelní systémy
	2.1 Synchronizace
	2.2 Vlastnosti programu
	2.3 Kritická sekce
	2.3.1 Dekkerův algoritmus
	2.3.2 Petersonův algoritmus (Tie-breaker)
	2.3.3 Bakery algoritmus
	2.3.4 Lamportův Bakery algoritmus
	2.3.5 Další algoritmy

	2.4 Synchronizační primitiva
	2.4.1 Složené atomické akce
	2.4.2 Zámek (lock, mutex)
	2.4.3 Semafor
	2.4.4 Monitor
	2.4.5 Podmíněná proměnná
	2.4.6 Bariéra
	2.4.7 Threadpool

	2.5 Synchronizační problémy
	2.5.1 Producent a konzument
	2.5.2 Čtenáři a písaři
	2.5.3 Večeřící filozofové
	2.5.4 Morissův algoritmus
	2.5.5 Problém kuřáků

	2.6 Návrh paralelního systému
	2.6.1 Fosterova metodologie

	3 Distribuované systémy
	3.1 Architektura distribuovaných systémů
	3.2 Komunikace v distribuovaném systému
	3.2.1 Midleware protokoly
	3.2.2 Remote Procedure Call (RPC)
	3.2.3 Další možnosti komunikace

	3.3 Koordinace a čas v distribuovaných systémech
	3.3.1 Skutečný čas
	3.3.2 Cristianův algoritmus
	3.3.3 Network Time Protocol (NTP)
	3.3.4 Reference Broadcast Synchronization (RBS)
	3.3.5 Logicky čas
	3.3.6 Koncept předcházení (a → b)
	3.3.7 Lamportův algoritmus
	3.3.8 Vektorové hodiny

	3.4 Vzájemné vyloučení v DS
	3.4.1 Centralizované řešení
	3.4.2 Distribuované řešení
	3.4.3 Řešení tokenem
	3.4.4 Decentralizované řešení
	3.4.5 Zookeper

	3.5 Lídr a jeho volba
	3.5.1 Bully algoritmus
	3.5.2 Ring algoritmus
	3.5.3 Raft algoritmus
	3.5.4 Algoritmus pro ad-hocObvykle bezdrátová síť bez centrálního bodu a s proměnlivou topologií sítě
	3.5.5 Dalši algoritmy

	3.6 Chyby v distribuovaných systémech
	3.6.1 Klasifikace chyb
	3.6.2 Byzantské chyby
	3.6.3 Detekování chyb a redundance

	3.7 Chord Systém
	3.8 Shoda v distribuovaném systému
	3.8.1 Redundance
	3.8.2 Algoritmus Flooding consensus
	3.8.3 Byzantské chyby podruhé
	3.8.4 Raft algoritmus
	3.8.5 Paxos algoritmus

	3.9 Replikace a konzistence
	3.9.1 Replikace
	3.9.2 Řetězová replikace
	3.9.3 Konzistence
	3.9.4 Několik teorému na závěr

	3.10 Globální stav v DS
	3.10.1 Chandy-Lamport algoritmus
	3.10.2 Dijkstra-Scholten algoritmus

	3.11 Distribuované transakce
	3.11.1 Jednofázový commit
	3.11.2 Dvoufázový commit
	3.11.3 Třífázový commit

	4 Blockchain
	4.1 Bloky
	4.1.1 Další typy shod

	4.2 Merkle tree
	4.3 Problémy blockchainu
	4.4 Hrozby blockchainu
	4.5 Bitcoin
	4.6 Ethereum

