
KMI/PDS - Paralelní a distribuované
systémy

Poznámky z výuky (2025 -- 2026)
Verze z 13. ledna 2026

Vojtěch Netrh
vojtanetrh@gmail.com

1

Obsah

1 Obecný úvod ⁠4

1.1 Zkouškové otázky . ⁠4
1.2 Články ke zkoušce . ⁠4
1.3 Pár pojmů na začátek . ⁠4
1.4 Flynnova taxonomie . ⁠5
1.5 Kdy a proč to dělat? . ⁠5

1.5.1 Škálování . ⁠5
1.6 Zrychlení výpočtů . ⁠5

2 Paralelní systémy ⁠5

2.1 Synchronizace . ⁠5
2.2 Vlastnosti programu . ⁠6
2.3 Kritická sekce . ⁠6

2.3.1 Dekkerův algoritmus . ⁠7
2.3.2 Petersonův algoritmus (Tie-breaker) . ⁠7
2.3.3 Bakery algoritmus . ⁠7
2.3.4 Lamportův Bakery algoritmus . ⁠8
2.3.5 Další algoritmy . ⁠9

2.4 Synchronizační primitiva . ⁠9
2.4.1 Složené atomické akce . ⁠9
2.4.2 Zámek (lock, mutex) . ⁠9
2.4.3 Semafor . ⁠9
2.4.4 Monitor . ⁠10
2.4.5 Podmíněná proměnná . ⁠10
2.4.6 Bariéra . ⁠10
2.4.7 Threadpool . ⁠10

2.5 Synchronizační problémy . ⁠10
2.5.1 Producent a konzument . ⁠10
2.5.2 Čtenáři a písaři . ⁠11
2.5.3 Večeřící filozofové . ⁠13
2.5.4 Morissův algoritmus . ⁠13
2.5.5 Problém kuřáků . ⁠14

2.6 Návrh paralelního systému . ⁠15
2.6.1 Fosterova metodologie . ⁠16

3 Distribuované systémy ⁠17

3.1 Architektura distribuovaných systémů . ⁠17
3.2 Komunikace v distribuovaném systému . ⁠17

3.2.1 Midleware protokoly . ⁠18
3.2.2 Remote Procedure Call (RPC) . ⁠18
3.2.3 Další možnosti komunikace . ⁠18

3.3 Koordinace a čas v distribuovaných systémech . ⁠18
3.3.1 Skutečný čas . ⁠19
3.3.2 Cristianův algoritmus . ⁠19
3.3.3 Network Time Protocol (NTP) . ⁠19
3.3.4 Reference Broadcast Synchronization (RBS) . ⁠19
3.3.5 Logicky čas . ⁠20

2

3.3.6 Koncept předcházení (𝑎 → 𝑏) . ⁠20
3.3.7 Lamportův algoritmus . ⁠20
3.3.8 Vektorové hodiny . ⁠20

3.4 Vzájemné vyloučení v DS . ⁠21
3.4.1 Centralizované řešení . ⁠21
3.4.2 Distribuované řešení . ⁠21
3.4.3 Řešení tokenem . ⁠21
3.4.4 Decentralizované řešení . ⁠22
3.4.5 Zookeper . ⁠22

3.5 Lídr a jeho volba . ⁠22
3.5.1 Bully algoritmus . ⁠22
3.5.2 Ring algoritmus . ⁠23
3.5.3 Raft algoritmus . ⁠24
3.5.4 Algoritmus pro ad-hoc1 sítě . ⁠24
3.5.5 Dalši algoritmy . ⁠25

3.6 Chyby v distribuovaných systémech . ⁠25
3.6.1 Klasifikace chyb . ⁠25
3.6.2 Byzantské chyby . ⁠26
3.6.3 Detekování chyb a redundance . ⁠26

3.7 Chord Systém . ⁠26
3.8 Shoda v distribuovaném systému . ⁠28

3.8.1 Redundance . ⁠28
3.8.2 Algoritmus Flooding consensus . ⁠28
3.8.3 Byzantské chyby podruhé . ⁠28
3.8.4 Raft algoritmus . ⁠29
3.8.5 Paxos algoritmus . ⁠29

3.9 Replikace a konzistence . ⁠29
3.9.1 Replikace . ⁠30
3.9.2 Řetězová replikace . ⁠30
3.9.3 Konzistence . ⁠30
3.9.4 Několik teorému na závěr . ⁠30

3.10 Globální stav v DS . ⁠31
3.10.1 Chandy-Lamport algoritmus . ⁠31
3.10.2 Dijkstra-Scholten algoritmus . ⁠32

3.11 Distribuované transakce . ⁠32
3.11.1 Jednofázový commit . ⁠32
3.11.2 Dvoufázový commit . ⁠32
3.11.3 Třífázový commit . ⁠32

4 Blockchain ⁠33

4.1 Bloky . ⁠33
4.1.1 Další typy shod . ⁠34

4.2 Merkle tree . ⁠34
4.3 Problémy blockchainu . ⁠34
4.4 Hrozby blockchainu . ⁠35
4.5 Bitcoin . ⁠35
4.6 Ethereum . ⁠35

1Obvykle bezdrátová síť bez centrálního bodu a s proměnlivou topologií

3

1 Obecný úvod

Dřív tenhle kurz učil RNDr. Martin Trnečka, Ph.D., takže se dá čerpat i z jeho materiálů
na webu. Jednak tam jsou prezentace, případně pak i cvičení a nějaký alespoň úvodní kód v
Pythonu.

Jednoduchá knihovna pro simulaci distribuovaných systému od Tomáše Mikuly https://github.
com/mikulatomas/distsim

Python používám pro ukázky kódu jelikož se nejvíc blíží pseudokódu a zároveň je u něj možné
mít hezky zvýrazněnou syntaxi (konkrétní díky balíčku codly).

Seznam bodů z jednotlivých úkolů je ve sdílené tabulce.

1.1 Zkouškové otázky

1. Algoritmy pro kritickou sekci.
2. Základní synchronizační primitiva a jejich použití.
3. Prostředky pro synchronizaci vláken.
4. Prostředky pro synchronizaci procesů.
5. Koordinace času v DS.
6. Vzájemné vyloučení v DS.
7. Volba lídra v DS.
8. Shoda v DS.
9. Tolerance chyby v DS.

10. Globální stav v DS a distribuovaný commit.
11. Replikace a konzistence v DS.
12. Blockchain.

1.2 Články ke zkoušce

[Na webu jsou na ně odkazy, tady je jen seznam o jaké jde.]

1. MapReduce: Simplified Data Processing on Large Clusters
2. ZooKeeper: Wait-free coordination for Internet-scale systems
3. In Search of an Understandable Consensus Algorithm (Extended Version)
4. Practical Byzantine Fault Tolerance
5. Bitcoin: A Peer-to-Peer Electronic Cash System

1.3 Pár pojmů na začátek

• Sekvenční
• Paralelní
• Distribuované

• Cluster … více strojů v síti (typicky blízko sebe); schované za API
• Superpočítač … cluster s velmi rychlým propojením
• Grid computing … více strojů v síti; volnější než cluster
• Cloud … transparentní přístup HW (IaaS), SW (SaaS) i platformě (PaaS)

4

http://trnecka.inf.upol.cz/teaching/pds/
http://trnecka.inf.upol.cz/teaching/pds/
https://github.com/mikulatomas/distsim
https://github.com/mikulatomas/distsim
https://upolomouc-my.sharepoint.com/:x:/g/personal/urbato02_upol_cz/Ee1qk3p3oDNPmG2Y5FFQT1IBT7-VR2ZuECw2lF8wjjX89w?e=zQGk5x

1.4 Flynnova taxonomie

• S … single
• M … multiple
• I … instruction
• D … data

V průběhu času různé varianty a také u různých věcí – SISD (von Neuman), SIMD (vektorové
instrukce, grafiky), MISD (neuronové sítě) a MIMD (dnes už vše). A vlastně ani to MIMD už
dnes nestačí.

Existují dále různé nástavby, případně jemnější dělení – SMP, DSM, SPMD, …

1.5 Kdy a proč to dělat?

Na úvod jedno důležité pravidlo: pokud to není třeba, tak neparalelizovat! Dnes ale skoro
vždy je nutné. Přináší výhody či problémy v řadě oblastí – výkon, spolehlivost, bezpečnost,
dostupnost…

1.5.1 Škálování

1. Up (vertikální) – lepší CPU, rychlejší disk, více paměti, …
2. Out (horizontální) – více strojů

1.6 Zrychlení výpočtů

Existuje několik možných pohledů. Ke každému z nich je možno udělat nějaký hezký graf,
případně reprezentovat i matematickým zápisem. Obecně jsou pro tyto zákony nějaké limity,
na které naráží (fyzikální, podle velikosti problému či specifických částí problému).

1. Moorův zákon – každý 1,5 roku se výkon procesorů zdvojnásobí
2. Amdahlův zákon – použijeme více procesorů pro řešení stejného problému
3. Gustafson-Barsisův zákon – když máme více zdrojů, můžeme problém řešit detailněji

2 Paralelní systémy

Tahle část by měla vydat cca na 3-4 přednášky.

Mohou nastat takové 3 základní problémy:
1. chyba souběhu,
2. uváznutí (deadlock a livelock),
3. vyhladovění.

Paralelní program Definice 1

Konečná množina sekvenčních procesů, kde každý proces sekvenčně vykonává atomické
operace.

Těmi atomickýcmi operacemi se přechází mezi různými stavy (hodnoty proměnných, aktuální
instrukce).

2.1 Synchronizace

Vpodstatě jediný úkol synchronizovat = vyřešit omezení na možné scénáře/plánky, které
jsou korektní. K tomu slouží několik možných nástrojů – atomické operace, složené atomické

5

operace2 , synchronizační primitiva (semafor, zámek, bariéra, …). Scénáře se dají zobecňovat a
podle daného vzoru vyřešit (není potřeba vymýšlet nic nového).

Atomická proměnná Definice 2

Atomická proměnná je taková, kterou lze atomicky upravit.

Volatilní proměnná Definice 3

Volatilní proměnná je taková, která má vždy poslední hodnotu (tzn. změna není jen v
cache).

2.2 Vlastnosti programu

Klasické debugování je nevhodné. Projít všechny možné scénáře je totiž nereálne, kvůli jejich
velikému množství. Pomůže nám tedy (modální a temporální) logika, prekondice, postkondice
a Hoareho logika (viz co už jsme řešili v PP4).

Máme 2 základní typy vlastností paralelního programu – živost (tvrzení platné pro alespoň 1
stav výpočtu) a bezpečnost (tvrzení platné pro všechny stavy výpočtu).

Důležitá vlastnost pro prostředí/plánovač je férovost (to už taky známe z PP4). Plánovač je
férový pokud jsou všechny scénáře férové (čili pokud se proces chystá vykonat operaci, musí se
ve scénáři objevit). Rozlišujeme 2 typy férovosti.

slabá férovost = akce, která vždy může nastat, někdy nastane (bez dalšího omezení)
silná férovost = akce, která někdy může nastat, někdy nastane (je tam nějaké omezení)

2.3 Kritická sekce

Kritická reference Poznámka 4

Výskyt proměnné je kritická reference pokud do ní zapisuje jeden proces a čte ji jiný proces.3

Problém kritické sekce, je část programu kde program pracuje se sdílenými zdroji a musíme
vyřešit, aby nedocházelo k problémům.

Příkaz await Poznámka 5

Příkaz await je (pasivní) čekání na splnění podmínky (neboli přerušení).

Požadavky pro korektní vyřešení kritické sekce jsou:
1. vzájemné vyloučení – max 1 proces v kritické sekci
2. absence uváznutí – jestliže se nějaké procesy snaží současně vstoupit do kritické sekce,

pak jeden z nich musí někdy uspět
3. absence vyhladovění – pokud se proces snaží vstoupit do kritické sekce, jednou musí

uspět

Vyřešil ho E. W. Dijkstra. Je to 𝑛 procesů, které ve smyčce vykonávají posloupnost akcí
rozdělenou na kritickou a nekritickou sekci. Synchronizací v podstatě zajistíme korektnost.

2atomicity a její konkrétní definice se může lišit na základě konkrétního systému/programovacím jazyku.
3Jeden příkaz může obsahovat více kritických referencí

6

Dobré podívat se na návrhy řešení v prezentaci 02. Především ty co jsou nevhodné.

Pro řešení kticiké sekce se dají použít obecné algoritmy uvedené dále.

2.3.1 Dekkerův algoritmus

Hlídá právo na vstup (turn) a žádá o vstup (want) s možností vzdát se.

Obrázek 1: Dekkerův algoritmus.

2.3.2 Petersonův algoritmus (Tie-breaker)

Vychází z Dekkerova algoritmu, ale cyklus s await nahrazen await se složenou podmínkou.

Obrázek 2: Petersonův algoritmus.

2.3.3 Bakery algoritmus

Simulace chování v pekárně, kde se čeká na lístky na chleba. Velmi hezké řešení, ale pomalé.

7

Obrázek 3: Bakery algoritmus (základní).

Obrázek 4: Bakery algoritmus pro 𝑛 procesů.

2.3.4 Lamportův Bakery algoritmus

Oproti předchozímu se vždy ví o případných kolizích, kde rozhoduje id procesu. Skutečně
lze použít (např. implementace vzájemného vyloučení tam kde HW nenabízí synchronizační
primitiva).

Obrázek 5: Lamportův Bakery algoritmus pro 𝑛 procesů.

Formalizace toho kdy lidé čekají ve frontě na chleba s očíslovanými lístečky. Buď můj lísteček
má nejmenší číslo nebo tam jsem jediný. Velmi elegantní řešení. Nutné každé vlákno nějak
jednoznačně (ideálně nějaké ID) pro případné porovnání těch vláken (poslední podmínka v tom
algoritmu).

8

2.3.5 Další algoritmy

Existují i další algoritmy, které se dále používají, ale jsou složitější. Algoritmy se reálně
neimplementují, ale používají se již implementované nebo synchronizační primitiva.

2.4 Synchronizační primitiva

2.4.1 Složené atomické akce

Jsou to „nižší“ operace než synchronizační primitiva typu lock nebo semaphore. Existuje jich
několik různých (my jich probereme 5), dělají zhruba to samé. Je k nim možné napsat co dělají
(nejlíp formou pseudokódu). Důležité si uvědomit, že se to provede celé bez přerušení.

1. test-and-set

2. swap

3. fetch-and-add – použili bychom čítač a frontu kdo je na řadě
4. compare-and-swap

5. load-link / store-conditional

1 bool lock = false C++

2 while(testAndSet(&lock)){

3 // empty cycle

4 }

5

6 // --- KRITICKÁ SEKCE ---

7 lock = false

1 int lock = 0; // 0 = volno, 1 = obsazeno C++

2

3 while (!CompareAndSwap(&lock, 0, 1)) {

4 // Čekáme, dokud lock není 0

5 }

6

7 // --- KRITICKÁ SEKCE ---

8 lock = 0;

Kritická sekce za pomocí compare-and-swap.

2.4.2 Zámek (lock, mutex)

Nejjednodušší synchronizační primitivum. Může vzniknout problém s přehnanou synchronizací.

1 nekritická sekce Python

2 lock.lock()

3 kritická sekce

4 lock.unlock()

2.4.3 Semafor

Má stavy 0 až 𝑛. Poskytuje 2 operace: čekat (dekrementace) P a signalizace (inkrementace)

V. Funguje jako chráněný čítač za pomocí zámku. Pro implementaci není vyžadováno aktivní
čekání. Férovost vyřešíme tak, že čekající procesy jsou ve frontě.

Jako nejjednodušší binární semafor můžeme brát zámek.

9

1 semaphore = 1 # sdílená paměť Python

2

3 nekritická sekce

4 semaphore.wait()

5 kritická sekce

6 semaphore.signal()

2.4.4 Monitor

Nejvíce strukturovaný synchronizační nástroj. V dost jazycích se nevyskytuje (má ho Java a
C#, třeba Python ne). Kód kritické sekce se schová do monitoru (velmi jednoduché řešení).

1 m = monitor(): Python

2 operation criticalOperation():

3 kritická sekce

4

5 nekritická sekce

6 m.criticalOperation()

2.4.5 Podmíněná proměnná

waitC vždy zablokuje a čekám až mě někdo zavolá

2.4.6 Bariéra

Místo v programu, kde se musí sejít více procesů a až poté jdou společně dále. Více možností
jak to udělat (lineární, stromová, motýlová).

2.4.7 Threadpool

Nějaká skupina (pool) vláken, která se přiřazují na vyžádání. Když to vlákno je volné, tak se
vyčistí a předá se mu nový úkol. Obvykle je totiž méně vláken než úkolů.

2.5 Synchronizační problémy

Typické problémy vyskytující skrz různé praktická aplikace, primárně v operačních systémech.
Problémy i jejich řešení je obecné, takže se dá napasovat na různé konkrétní příklady a není
nutné nic vymýšlet znovu.

2.5.1 Producent a konzument

Často se vyskytující problém, ve kterém máme 2 typy procesů – producenta (produkuje data)
a konzumenta (sbírá a zpracovává data). Obvykle je od obou typů více instancí. Komunikace
probíhá přes buffer, který má danou velikost 𝑛 (teoreticky by mohl být nekonečný a některé
věci by byly jednodušší, ale praxe taková není). Pro každou položku v bufferu platí, že je
vyprodukována a zkonzumována právě jednou.

Příklady jsou: event loop, stream, zpracování výsledků, které jsou produkovány průběžně. V
praxi třeba tzv. event driven systems, kde program musí na něco reagovat (třeba stisk klávesy
uživatele).

Pro podmínky řešení platí některé zásady. Pokud někdo manipuluje (dodává nebo čte) data z
bufferu, tka buffer není v konzistentním stavu ⇒ buffer musí být ve vzájemném vyloučení.
Pokud je buffer prázdný a konzument chce data přečíst, musí počkat (obdobně u producenta).

10

1 # producent Python

2 event = waitForEvent()

3 mutex.wait()

4 buffer.add(event)

5 items.signal()

6 mutex.signal()

1 # konzument Python

2 items.wait()

3 mutex.wait()

4 event = buffer.get()

5 mutex.signal()

6 event.process()

Výpis 1: Řešení producent a konzument s nekonečným bufferem

1 # inicializace Python

2 mutex = Semaphore(1)

3 items = Semaphore(0)

4 spaces = Semaphore(buffer.size())

1 # producent Python

2 event = waitForEvent()

3

4 spaces.wait()

5 mutex.wait()

6 buffer.add(event)

7 mutex.signal()

8 items.signal()

1 # konzument Python

2 items.wait()

3 mutex.wait()

4 event = buffer.get()

5 mutex.signal()

6 spaces.signal()

7

8 event.process()

Výpis 2: Řešení producent a konzument s bufferem o velikosti 𝑛

2.5.2 Čtenáři a písaři

Opět jsou 2 typy procesů – písaři (zapisují do nějakého místa) a čtenáři (z onoho místa čtou).
Písaři musí psát ve vzájemném vyloučení, ale čtenáři mohou číst zároveň a každý písař je ve
vzájemném vyloučení se všemi čtenáři.

Příklady: přístup k databázi, souboru nebo datové struktuře.

1 # inicializace Python

2 readers = 0 # počet čtenářů v místnosti

3 mutex = Semaphore(1)

4 roomEmpty = Semaphore (1) # 1 pokud v místnosti nikdo není, 0 jinak

1 # písaři Python

2 roomEmpty.wait()

3 # KRITICKÁ SEKCE pro písaře

4 roomEmpty.signal()

1 #čtenáři Python

2 mutex.wait()

3 readers += 1

4 if readers == 1:

5 roomEmpty.wait() # kontroluje a zamyká jen první

6 mutex.signal()

7

8 # KRITICKÁ SEKCE pro čtenáře

9

10 mutex.wait()

11

11 readers -= 1

12 if readers == 0:

13 roomEmpty.signal() # poslední co odchází odemkne

14 mutex.signal()

Analogií pro speciální pravidla pro prvního a posledního čtenáře může být skupina lidí co vchází
do místnosti, kde je tma a první rozsvěcí a poslední zhasne.

Vylepšenou variantou je problém férových čtenářů a písařů. Pokud písař chce psát a pořád
nějaký čtenář čte, tak mohou písaři vyhladovět ⇒ chceme aby měli písaři přednost. To přidá
podmínku, že pokud chce nějaký písař psát, nesmí žádný nový čtenář začít číst (ostatní čtenáři
své čtení dokončí normálně). Viz kód dále.

1 class Lightswitch: Python

2 def __init__(self):

3 self.counter = 0

4 self.mutex = Semaphore(1)

5

6 def lock(self, semaphore):

7 self.mutex.wait()

8 self.counter += 1

9 if self.counter == 1:

10 semaphore.wait()

11 self.mutex.signal()

12

13 def unlock(self, semaphore):

14 self.mutex.wait()

15 self.counter -= 1

16 if self.counter == 0:

17 semaphore.signal()

18 self.mutex.signal()

1 # inicialiazce Python

2 readSwitch = Lightswitch()

3 writeSwitch = Lightswitch()

4 noReaders = Semaphore(1)

5 noWriters = Semaphore(1)

1 # písaři Python

2 noReaders.wait()

3 readSwitch.lock(noWriters)

4 noReaders.signal()

5 # KRITICKÁ SEKCE

6 readSwitch.unlock(noWriters)

1 #čtenáři Python

2 writeSwitch.lock(noReaders)

3 noWriters.wait()

4 # KRITICKÁ SEKCE

5 noWriters.signal()

6 writeSwitch.unlock(noReaders)

12

2.5.3 Večeřící filozofové

Procesy v tomto problému požadují více sdílených zdrojů ⇒ konkurují si. Je zde 1 typ procesů,
který má 2 operace – jí (vyžaduje zdroje) a přemýšlí (nevyžaduje zdroj). Sedí u kulatého stolu
a mezi každou dvojicí leží 1 vidlička a každý potřebuje k jídlu ony 2 vidličky vedle něj. Vidličku
smí vždy držet jen 1 filozof, vždy může někdo jíst (nesmí dojít k deadlocku), nikdo nesmí
vyhladovět (vyhladovění) a v jediném okamžiku musí být umožněno jíst více filozofům (lepší
efektivita).

Obrázek 6: Večeřící filozofové vizualizace

1 # základní chování filozofů Python

2 while True:

3 think()

4 get_forks()

5 eat()

6 put_forks()

Existuje několik korektních verzí řešení:
1. Použití číšníka (footman), který eliminuje počet filozofů, kteří mohou jíst (pokud budou

jen 4 nemůže dojít k deadlocku)
2. Další řešení je mít alespoň 1 praváka a 1 leváka, poté nemůže dojít k deadlocku
3. Řešení podle Tanenbauma přiřazuje filozofům stavy (eating, thinking, hungry) a používá

semafory, které indikují zda filozof může začít jíst. Toto řešení není ideální neboť může
dojít k vyhladovění.

2.5.4 Morissův algoritmus

Něco jako non-starve mutex solution (zámek o který když vlákno požádá musí ho v konečném
čase dostat) z knížky Little Book of Semaphores od Allen B. Downey z kapitoly 4.

1 mutex.wait() Python

2 room1 += 1

3 mutex.signal()

4

5 t1.wait()

6 room2 += 1

7 mutex.wait()

8 room1 -= 1

9

13

10 if room1 == 0:

11 mutex.signal()

12 t2.signal()

13 else:

14 mutex.signal()

15 t1.signal()

16

17 t2.wait()

18 room2 -= 1

19 # critical section

20 if room2 == 0:

21 t1.signal()

22 else:

23 t2.signal()

2.5.5 Problém kuřáků

V tomto problému máme 4 vlákna – 1 agent a 3 kuřáci.

Popis problému: kuřáci dokola opakují čekáni na suroviny (tabák, papírky, sirky), smotání
cigarety a kouření. Předpokládáme, že agent má neomezeně všech surovin a každý kuřák má
neomezeně od jedné suroviny. Agent opakovaně náhodně vybírá 2 ingredience a dává je k
dispozici kuřákům (podle toho které vybere zvolí kuřáka, kterému ingredience stačí k ubalení
cigarety).

Analogie k praktickému problému je taková, že agent představuje operační systém, který
alokuje zdroje a kuřáci jsou programy, které zdroje chtějí a potřebují.

Obecně se prezentuje více různých verzí, které mají různě náročné řešení (případně jsou
neřešitelné). Tady uvažujeme verzi, kde platí, že nemůžeme modifikovat kód (nastavení)
agenta, ostatní omezení nejsou.

1 # agent Python

2 agentSem = Semaphore(1)

3 tobaco = Semaphore(0)

4 paper = Semaphore(0)

5 match = Semaphore(0)

Agent se v podstatě skládá ze 3 konkurentních vláken – agent A až agent C.

1 # agent A Python

2 agentSem.wait()

3 tobaco.signal()

4 paper.signal()

1 # agent B Python

2 agentSem.wait()

3 paper.signal()

4 match.signal()

1 # agent C Python

2 agentSem.wait()

3 tobaco.signal()

4 match.signal()

Obvyklá řešení, která nás napadají zde nefungují. Nejčastěji se objeví problém deadlocku.
Řešením od Parnase je použití 3 vláken navíc zvaných pushers. Ti odpovídají na signály od
agentů a drží si přehled dostupných surovin, tak aby mohli zavolat vhodného kuřáka.

1 # inicializace Python

2 isTobacco, isPaper, isMatch = False

3 tobaccoSem = Semaphore(0)

14

4 paperSem = Semaphore(0)

5 matchSem = Semaphore(0)

1 # pusher A Python

2 tobacco.wait()

3 mutex.wait()

4 if isPaper:

5 isPaper = False

6 matchSem.signal()

7 elif isMatch:

8 isMatch = False

9 paperSem.signal()

10 else:

11 isTobacco = True

12 mutex.signal()

Probudí se kdykoliv se objeví tabák. Pokud bude isPaper pravdivý, tak pusher B už musel být
zavolat a může tedy signalizovat kuřáka, který má sirky. Pokud se to samé stane s isMatch,
zavolá se kuřák s papírky. Nakonec pokud pusher A běžel první, vše ostatní bude false a on
tedy signalizuje, že tabák je dostupný, ale nikoho nemůže zavolat.

Pro ostatní 2 pushery je kód obdobný.

1 # kuřák, který má tabák Python

2 tobaccoSem.wait()

3 makeCigarette()

4 agentSem.signal()

5 smoke()

Mohou nastat další zobecněné varianty tohoto problému. Třeba pokud upravíme agenta tím,
že eliminujeme požadavek, že agent musí čekat po vybrání suroviny. V tomto případě může být
na stole několik instancí jedné ingredience.

2.6 Návrh paralelního systému

Lze rozdělit do několika kroků. Obvykle před vytvářením paralelního systému máme ten systém
sekvenční, pokud ne, tak prvně uděláme sekvenční řešení (je intuitivnější a jednodušší). Dalším
krokem je dekompozice (rozklad) na menší části. Dá se dělat podle úkolů (task decomposition)
– jaké úkoly máme, jejich závislost (pomocí grafu) a nebo podle dat (data decomposition) – jak
rozdělit data pro konkurentní zpracování, potřebujeme podporu u HW, typické pro SIMD a má
dobrou horizontální škálovatelnost.

Pipeline. Vzor pro dekompozici podle úkolů. Úkol jde rozdělit na více po sobě jdoucích úkolů.
Více úkolů poběží najednou na jiný částech dat. Např. montážní linka na auta, proces extract-
-transform-load.

Paralelizace cyklů (loop-level). Vzor pro dekompozici podle dat. Cyklus provádějící daný
úkol (nezávisle) pro iterovaná data. Každou iterace můžeme provést paralelně se všemi dalšími.
Jde provést jednoduše třeba s threadPool a někdy provádí sám kompilátor.

15

Mapování. Vzor pro dekompozici podle dat. V kolekci dat na každém prvku provádíme stejnou
operaci (něco takového jsme brali v Lispu a Paradigmatech programování). Opět každý můžeme
provést paralelně. Podobné jak s cykly o odstavec více, ale přístup je funkcionální.

Fork/Join. Vzor pro dekompozici podle dat. Část zpracování dat se dá udělat paralelně na
částech dat a následně potřebujeme zpracovat výsledky z těchto části (proto název fork a join).
Např. paralelní merge sort.

Map/Reduce. Vzor pro dekompozici podlet dat. Nejdříve mapování a pak agregace (redukce).
Podobné jako Fork/Join, ale z funkcionálního pohledu.

0. Sekvenční řešení
1. Dekompozice (podle úkolů nebo dat)
2.

2.6.1 Fosterova metodologie

Vymyslel postup návrhu paralelního programu.

1. Dekompozice – rozdělení na menší části
2. Komunikace – popis a zabezpečení komunikace mezi částmi
3. Aglomerace – shlukování částí do logických skupin
4. Mapování na zdroje – technická realizace

Příkladem může být násobení matic nebo určení četnosti slov v textu. Pro každý z těchto
příkladů je v prezentaci 07 rozpracovaný krokový návrh.

16

3 Distribuované systémy

Tady je zbylých 7-8 přednášek.

Distribuovaný systém můžeme chápat jako speciální případ paralelního systému, jelikož více
autonomních systémů spolupracuje na jednom úkolu. Mohou být na jediném stroji, případně v
síti WAN i LAN, eventuálně i více distribuovaných systémů tvářících se jako jeden (můžou se
řetězit). Oproti paralelním systémům mají několik rozdílů:

• absence sdílené paměti,
• komunikace (jak, rychlost, latence, spolehlivost),
• synchronizace času.

Příklady mohou být: aplikace komunikující s DB, IoT, BlockChain, Internet, …

3.1 Architektura distribuovaných systémů

Rozdíl mezi SW architekturou a systémovou architekturou. Plno možností jak bude co udělaná
a co se musí vyřešit.

Klient-Server. Klienti požadují od serverů služby (ti je nabízí). Asi nejvíc běžné. Pro někoho
může být uzel A klient pro někoho server (záleží na úhlu pohledu). Obvykle po síti. Nevýhodou
je centralizace (kvůli serveru). Pro komunikaci klienta se serverem se používá API. Komunikace
formou request-response a probíhá asynchronně. Např. webové služby, databázové servery, e-
-mailové servery.

Peer-to-Peer. Založena na myšlence, že všechny uzly si jsou rovny a znají své sousedy. Tím
pádem je systém plně decentralizovaný. Stává se tedy snadno škálovatelný a dynamický (uzly
mizí a přibývají dle potřeby). Např. blockchain, BitTorrent.

Vrstvená-Architektura. Systém rozdělen do logických vrstev (obvykle jsou 3 – uživatelské
rozhraní, logika aplikace, datová vrstva). Obvykle jsou nezávislé a komunikují mezi sebou.
Vrstvy komunikují jen se sousedními. Např. větší webové aplikace (UI jako JavaScript, back-
-end třeba C# a DB v MySQL).

Service oriented architecture (SOA). Snaha mít komponenty jako služby a znovu je
používat. Výhodou je vysoká modularita a dobrá škálovatelnost.

Microservices. Něco jako neprovázaná SOA. Jednotlivé microservices by mělo být možné
nasazovat nezávisle. Členění bývá uděláno podle logiky aplikace. Dnes velmi populární.

Event-driven architecture. Centrálním prvkem systému jsou události. Jednotlivé kompo
nenty je produkují a následně konzumují. Jsou na sobě plně nezávislé. Např. chytrá domácnost,
IoT, Kafka.

Hybridní přístup. Kombinuje více různých přístupů. Např. BitTorrent, který má prominentní
uzly sloužící jako „servery“.

3.2 Komunikace v distribuovaném systému

V distribuovaných systémech nemáme sdílenou paměť ⇒ musíme komunikovat přes
posílání zpráv. U zpráv máme různé úrovně abstrakce, různé protokoly. Jsou to klasické sítě
jako jsme probrali dříve (KMI/POS1 a KMI/POS2). V realitě je to vrstvený model sítě jako
ISO/OSI.

17

Budeme řešit věci, které jsou především v aplikační vrstvě (především z ISO/OSI tam je to
jednodušší). V této vrstvě funguje např. DNS, autentizační/autorizační protokoly, komunikační
protokoly RPC a AMQP, … Fyzický přenos za náš řeší OS.

3.2.1 Midleware protokoly

Systém pro zpracování zpráv. Jsou 2 možnosti – perzistentní systém (drží zpráv dokud není
doručena) a tranzistentní (dočasný) systém. Odesílatel může být asynchronní (jen pošle a
pracuje dál) nebo různě moc synchronní (potvrzení převzetí, potvrzení přijetí příjemcem, …).
Přístupy odesílatele a middleware můžeme kombinovat.

3.2.2 Remote Procedure Call (RPC)

Z pohledu procesů není vidět, že bychom nějak komunikovali přes síť (funguje prostě tak, že
se volají přímo lokální metody). O co jednodušší je myšlenka, tak provedení je náročné (různé
adresní prostory, předání argumentů/výsledků, jiné konvence, stroj může vypadnout ze sítě, …).
RPC musí být podporováno programovacím jazykem (u všech běžných to je).

Provedení z pohledu klienta. Klient netuším, že volá metodu ze vzdáleného objektu, pro
něj jde o lokální volání remoteObject.methods(arg). Middleware

Provedení z pohledu volaného

Může nastat řada problémů. Předávání parametrů – marshalling(unmarshalling). Výsledek jako
jednoduché typy je úplně bez prolbémů, horší jsou referenční typy (nejhůře ty složité).

RPC funguje v několika variantách (asynchronní, jednosměrné, multicast). Obecně ale RPC
tlačí, aby zpracování bylo synchronní (čili počkám si na zpracování a návrat výsledku).

3.2.3 Další možnosti komunikace

• MOC – obecné posílání zpráv (message oriented communication). Příkladem můžou být
roury (pipes). Jednosměrné spojení výstup-vstup. V Pythonu jsou obousměrné. Sockety
jsou abstrakcí portu. Různé operace pro klienta (connnect, send, close, …) a pro server
(bind, listen, accept, …). Sockety jsou ještě nad HTTP protokolem. Message queue jsou
fronty zpráv. Jsou perzistentní. Např. RabbitMQ. Message broker je centrálním místem
pro výměnu zpráv. Má poměrně rozsáhlé možnosti. Např. ApacheKafka.

• MOM – message oriented middleware
• MPI – message passing interface
• IPC – inter-process communication

Několik různých modelů komunikace: request-reply, publish-subscribe, pipeline.

Vysvětlení multicastu a broadcastu. Overlay jako struktura nad sítí (tree nebo mesh). Multicast
má více typů – flooding (uzel přepošle všem kromě zdroje, pozor na duplikaci) a edpidemické
protokoly/gossip (snaha informovat okolí náhodným výběrem).

• gRPC framework
• protobuf repository
• RPC in Python

3.3 Koordinace a čas v distribuovaných systémech

Koordinace DS probíhá na základě času (typicky timestamp). Na různých uzlech by mohl být
různý čas. V DS nemůže být jednotný čas kvůli různé době cestování mezi různými uzly (jsou

18

totiž různé typy spojení). Obecně chybí globální hodiny. Je rozdíl mezi skutečným časem a
logickým časem.

Omezení času Poznámka 6

Čas se nikdy nevrací zpět! Rozbily by se tím timestamp na onom uzlu.

3.3.1 Skutečný čas

Nelze plně synchronizovat (tudíž se snažíme synchronizací jen snížit rozdíl). Použití naivního
algoritmu (viz níže) nefunguje, protože: latence sítě, mohlo by dojít k posunu dozadu, není
společný referenční časový bod.

1. Klient 𝐾 požaduje UTC čas od serveru 𝑆
2. 𝐾 požádá o čas 𝑆.
3. 𝑆 odpoví svým aktuálním časem 𝑡𝑠.
4. 𝐾 nastaví čas dle 𝑡𝑠.

3.3.2 Cristianův algoritmus

Máme klienta 𝐾 a server 𝑆 s časem UTC. Server 𝑆 nemusí být nutně na nejvyšším autorita
tivním levelu, jen je na vyšší úrovni než klient (jinak to nedává smysl).

1. 𝐾 požáda o čas 𝑆 a uloží si čas požadavku 𝑡1
2. 𝑆 odpoví aktálním časem 𝑡𝑠
3. 𝐾 si uloží čas přijetí 𝑡2
4. výsledný čas 𝐾: 𝑡𝑠 +

𝑡2−𝑡1
2

Čas z tohoto může být celkem nepřesný. Můžeme tento algoritmus zopakovat 𝑥-krát a z toho
udělat průměr nebo medián pro zisk lepšího výsledku.

3.3.3 Network Time Protocol (NTP)

V praxi dost často používané. Základně podobné Cristianově algoritmu, ale lépe odhadujeme
zpoždění zpráv a na základě toho dostaneme přesnější čas. Centrální autoritou je UTC.

1. 𝐾 požádá o čas 𝑆 v čase 𝑡1
2. 𝑆 přijme požadavek v čase 𝑡2
3. 𝑆 pošle odpověď s (aktuálním) časem 𝑡3
4. 𝐾 ji přijme v čase 𝑡4
5. proběhne odhad offsetu4 𝐾 vůči 𝑆: Θ = 𝑡3 +

(𝑡2−𝑡1)+(𝑡4−𝑡3)
2 − 𝑡4

6. odhad zpoždění zpráv: 𝛿 = (𝑡4−𝑡1)−(𝑡3−𝑡2)
2

7. 𝐾 eventuálně upraví rychlost času pro srovnání

Výpočet Θ a 𝛿 se provádí vícekrát (pro lepší přesnost). Pokud by 𝐾 byl napřed oproti 𝑆 (záporné
Θ), tak se čas na 𝐾 zpomalí. Pro nastavení času na 𝐾 se použije minimální 𝛿.

3.3.4 Reference Broadcast Synchronization (RBS)

Distribuované řešení používané v bezdrátových/senzorových sítích (IoT). Cílem zde není mít
skutečný přesný čas, ale shodnou se na stejném v rámci sítě. Předpokládá se stejná rychlost
přenosu mezi všemi zařízeními. Uzly si pouze ukládají offset, neupravují svůj čas.

1. Uzel 𝑢 pošle broadcast zprávu 𝑚 (referenční impulz), která to celé začne

4O kolik jsou lokální hodiny 𝐾 rozdílné oproti času serveru 𝑆. Může nabývat i záporných hodnot.

19

2. Uzly 𝑝 a 𝑞 uloží po obdržení časy přijetí 𝑡𝑝 a 𝑡𝑞
3. Uzly 𝑝 a 𝑞 si vzájemně pošlou zprávu s časem přijetí 𝑚 (tedy 𝑡𝑝 a 𝑡𝑞)
4. Uzly 𝑝 a 𝑞 z dodaného času vypočítají offset proti druhému uzlu
5. Časem výsledky mohou být neaktuální kvůli driftu (průměry, lineární regrese)

3.3.5 Logicky čas

Skutečný čas přináší celkem dost problémů a může nám stačit „méně“. Logický čas je něco jako
správné uspořádání operací (operace a nastala po operaci b). Takovou operací může být to, že
odeslání zprávy musí proběhnout před jejím zpracováním (tzv. koncept předcházení).

3.3.6 Koncept předcházení (𝑎 → 𝑏)

Byl představen Lamportem v roce 1978. Jedná se o tranzitivní relaci (nikoliv úplnou), takže
pokud platí 𝑎 → 𝑏 (čteme jako a předchází b) a 𝑏 → 𝑐, pak musí platit 𝑎 → 𝑐. Pokud jsou 2
události v odlišných procesech, které nesdílí zprávy pak 𝑥 → 𝑦 není pravda, ale ani 𝑦 → 𝑥 není
pravda.

Tyto pravidla jsou dobře vidět na vizualizacích.

• Článek - Lamport, logický čas
• Článek - Ricart, Agrawala, vzájemné vyloučení
• Apache zookeper
• Blogy o čase v DS
• Blogy o čase v DS vol. 2

3.3.7 Lamportův algoritmus

Lokální hodiny jsou vnímány jako čítač (za každé provedení operace +1). Čítač se zvedá při:
• vykonání lokální operace,
• před odesláním zprávy,
• při přijetí zprávy s vyšší hodnotou čítače (tam se bere vyšší hodnota z hodnoty přijaté a

hodnoty mojí zvýšené o 1).

3.3.8 Vektorové hodiny

Každé události 𝑎 můžeme přiřadit časovou hodnotu 𝐶(𝑎). Potom platí 𝑎 → 𝑏, tak 𝐶(𝑎) < 𝐶(𝑏).
Naopak NEplatí, že pokud 𝐶(𝑎) < 𝐶(𝑏), tak 𝑎 → 𝑏 (nepopisují kauzalitu).

Vektor hodin ⃗𝐶𝑖 je v každém procesu. ⃗𝐶𝑖[𝑖] je lokální logický čas procesu 𝑖. ⃗𝐶𝑖[𝑗] = 𝑘 znamená,
že proces 𝑖 ví, že proces 𝑗 vykonal 𝑘 operací. Pokud hodiny není možné porovnat jedná se o
konkurentní operace. Proces 𝑖 se dozví o změně hodin procesu 𝑗 pouze pokud od něj dostane
zprávu (kde jsou jeho hodiny).

Platí následující uspořádání:

⃗𝐶1 ≤ ⃗𝐶2 pokud ∀𝑖 : ⃗𝐶1[𝑖] ≤ ⃗𝐶2[𝑖]

⃗𝐶1 < ⃗𝐶2 pokud ⃗𝐶1 ≤ ⃗𝐶2 a ⃗𝐶1 ≠ ⃗𝐶2

20

https://dl.acm.org/doi/10.1145/359545.359563
https://dl.acm.org/doi/10.1145/358527.358537
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
https://muratbuffalo.blogspot.com/2024/12/use-of-time-in-distributed-databases.html
https://sookocheff.com/tags/time/

Obrázek 7: Znázornění vektorových hodin.

3.4 Vzájemné vyloučení v DS

Vzhledem k tomu, že v DS musí procesy spolupracovat na dokončení úkolu nastává často
situace, kdy musí přistupovat ke stejnému zdroji. Pro vyloučení nekonzistence je nutné zajistit
exkluzivní přístup k tomuto zdroji. Obecně se používají dva typy přístupu přístup založený na

tokenu a přístup založený na oprávnění a řešení mohou být centralizovaná, decentralizovaná
nebo distribuovaná.

3.4.1 Centralizované řešení

Nejjednodušším řešení, které člověka napadne je určení jednoho uzlu (rozhodčí), který bude
rozhodovat o tom, kdo má výhradní přístup ke sdílenému zdroji. Funguje na principu fronty a
posílání zpráv REQUEST a RELEASE.

Nevýhody: selhání rozhodčího (ostatní nemají jak poznat), přetížení rozhodčího (bottleneck).

3.4.2 Distribuované řešení

Řešení je inspirováno Lamportovými logickými hodinami. Řešení vyžaduje úplné seřazení
událostí v systému (u jakékoliv dvojice událostí musí být jasné, která z nich se stala první).
Potřebuje 2(𝑁 − 1) zpráv (kde 𝑁 je počet uzlů) a využívá zprávy REQUEST a ACK.

1. Proces 𝑖 chce výhradní přístup
2. Zašle REQUEST(𝑖, 𝑡) ostatním (𝑡 je časové razítko zprávy)
3. Proces 𝑗 po přijetí odpoví ACK (nechce přístup nebo 𝑡 < 𝐶𝑗), nebo přidá 𝑖 do fronty žádostí.
4. Pokud čekající 𝑖 dostane (𝑁 − 1) ACK, získává přístup.
5. Při ukončení práce pošle 𝑖 ACK všem ve své frontě.

Nevýhody: možných 𝑁 bodů selhání (opakující se zprávy).

3.4.3 Řešení tokenem

Nad sítí se vytvoří virtuální kruh v němž si jednotlivé uzly předávají token (ten je právě jeden).
Platí výhradní práce se zdrojem = držení tokenu. Když proces obdrží token zjistí zda-li chce
pracovat se díleným zdrojem, pokud ano pracuje (po dokončení odešle token dále), pokud ne
odesílá token dále ihned.

Tento přístup má vlastní problémy – ztráta tokenu (při výpadku uzlu nebo nedoručení zprávy),
nutnost udržovat informaci o kruhu kvůli výpadku následovníka.

21

Obrázek 8: Vzájemné vyloučení pomocí tokenu.

3.4.4 Decentralizované řešení

Přsístup je založen na hlasování. Každý sdílený zdroj má 𝑁 replik, které vždy mají svého
koordinátora, který slouží k výhradnímu přístupu. Pokud chce uzel přistupovat ke sdílenému
zdroji potřebuje většinu hlasů 𝑚 > 𝑁

2 od koordinátorů. Pokud byl přístup zamítnut bude uzel
žádat znovu po náhodném čase. Problém nastává při výpadku koordinátora a jeho resetování,
může totiž nekorektně pracovat s tím jaký hlas a komu už udělil.

3.4.5 Zookeper

Řešení používané v reálném světe pro tyto typy problémů. Jedná se o celý (centralizovaný)
koordinační systém. Poskytuje vzájemné vyloučení, volbu lídra, monitoring, zotavení z chyb.

3.5 Lídr a jeho volba

Lídr je nějak významný uzel. Má několik typických úkolů: komunikace s uživatelem, koordinace,
vzájemné vyloučení, atd. Na tom kdo je leader se musí shodnout všechny uzly. Lídří se v
průběhu času mohou měnit. Často je toto chování od systému vyžadováno navenek.

Předpokladů pro leadera je několik:
• všechny uzly mají ID (předeším pro volbu, preferujeme větší)
• všichni o všech ví
• uzly mohou vypadnout (u běžného uzlu nevadí, u leadera musí být nějak vyřešeno)

3.5.1 Bully algoritmus

Pracuje na principu „silnější vyhrává“. Kandidující uzly jsou:
• ty které zjistí, že leader nereaguje
• nově příchozí uzel
• silnější může převzít kandidaturu.

Kandidátů může být logicky v nějaký čas více. V nejhorším případě 𝑂(𝑛2) zpráv. Pokud dojde
k rozdělení sítě algoritmus selže.

22

Obrázek 9: Bully algoritmus pro volbu leadera.

1. Uzel začne posláním zprávy election(id) všem uzlům, které mají vyšší id než on sám
2. Uzel, který obdržel zprávu buď neraguje nebo přebírá kandidaturu (má vyšší id) a odpoví

OK

3. Postupně se opakuje a jediný, kdo zůstane se stává leaderem (nejvyšší id), což musí všem
oznámit (zpráva COORDINATOR).

3.5.2 Ring algoritmus

Je to tzv. logický kruh (overlay). Všichni musí znát následovníky i další uzly. Volby zahájí uzel
(uzly), které zjistí že leader nereaguje, takže postupně kandidují všichni běžící. Vždy 𝑂(𝑛) zpráv.

Začíná se u uzlů, které zjistí že leader nereaguje a ti vyhlašují volby, které probíhají následovně:
1. Uzel posílá zprávu election(id) svému následovníkovi (pokud nefunguje, tak ho přeskočí)
2. Uzel který obdrží zprávu, tak má 2 možnosti – pokud zprává neobsahuje jeho id, tak ho

přidá a pošle dál (tím se dostává do voleb) nebo pokud obsahuje, tak pošle zprávu leader
se stejným seznamem (už ten seznam u něj musel jednou být)

3. Až to takto oběhne kolečko (vlastně 2x), tak se leaderem stává ten s nejvyšším id (ten se
to sám dozví z toho seznamu).

23

Obrázek 10: Bully algoritmus pro volbu leadera.

3.5.3 Raft algoritmus

Základem pro další algoritmy. Jde vlastně o takový distribuovaný log, do kterého vidí všcihni.
Funguje na většinovém kvóru. Umožňuje tolerovat chyby. Na počátku algoritmu jsou všichni
následovníci. Pokud dojde k rozdělení sítě, tak v každé části nastanou volby a Raft si s tím
dokáže korektně poradit.

Máme 3 stavy uzlů – lídr, následovník a kandidát.

Několik stěžejních pojmů – term, timeout, hearbeat, split-vote.

Co platí? V každém termu je pouze jeden lídr. Termy jsou číslované od 0. Leader musí v
pravidelných intervalech posílat heartbeat, aby se vědělo, že žije. Pokud by se uzly do timeoutu
neshodly nastanou nové volby.

Volba lídra
1. Volby vyvolá následovník pokud mu nepřijde heartbeat od lídra – zvýší svůj term, stane

se kandidátem, hlasuje pro sebe a požádá všechny ostatní o hlas (poslání zprávy)
2. Pokud uzel obdrží žádost o hlas tak – pokud nehlasoval a nemá novější log (více commi

tovaných operací) než uzel který poslal žádost, tak hlas potvrdí nebo pokud hlasoval
ignoruje

3. Když kandidát dostane většinu hlasů (z celkového počtu uzlů), tak se prohlásí leaderem

Všechno o tomto algortimu od autora (články, knihovny v různých jazycích i vizualizace) je
tady na webu.

3.5.4 Algoritmus pro ad-hoc5 sítě

V tomto případě jsou kandidáti na lídra všichni a je vybrán ten, kdo nejlépe plní požadavky.

1. Ten kdo chce být lídrem posíla ELECTION svým sousedům
2. Ten kdo obdrží ELECTION pokud nemá rodiče, tak si na jeho místo nastaví odesílatele,

přepošle všem ostatním a po potvrzení od nich potvrdí i on
3. Poku už rodiče má, tak jen potvrdí přijetí

5Obvykle bezdrátová síť bez centrálního bodu a s proměnlivou topologií

24

https://raft.github.io/#implementations

4. Tímto vzniká strom

3.5.5 Dalši algoritmy

• Zookeper
• Chang-Roberts (upravení Ring algoritmus)
• Gossip protokoly (napodobuje šíření drbů nebo virů v populaci)
• Proof of work nebo Proof of stake (pro velké sítě)

3.6 Chyby v distribuovaných systémech

Chyba je selhání čehokoliv v systému (uzlu, hrany, kanálu, …). Prostě je to jiné než zamýšlené
a očekávané chování. To dělá reakci výrazně složitější. Obecně musíme v omezeném množství
tolerovat chyby.

Asynchornní systém neumožní chyby detekovat, protože nevíme jestli probíhá výpočet a čeká
se nebo uzel vypadl. U částečně synchronního s timeouty to možné je.

Základní 4 vlastnosti:
1. dostupnost (dává odpověď)
2. bezpečnost (chyba nezpůsobí katastrofu)
3. spolehlivost (běží nepřetržitě v daném časovém úseku)
4. udržovatelnost (snadnost opravy v případě chyby).

Občas problémy s rozlišením dostupnosti a spolehlivosti.

Metriky pro měření chyb (z jejich hodnot můžeme vyčíst, které vlastnosti jsou dobře splněny):
• MTTF – meain time to failure (čas po kterém dojde k chybě)
• MTTR – mean tim to repair (čas nutný k opravě)
• MTBF – mean time between failures (čas mezi výpadky)

Chyba Poznámka 7

Všechny předchozí definice a odstavce važdují aby byla chyba přesně definována.

3.6.1 Klasifikace chyb

Rozlišujeme podle trvání nebo podle projevu. Pomáhá rozlišit jak jsou chyba závažné, případně
jaký způsob je vhodný pro jejich řešení.

1. přechodná – objeví se jednou a zmizí
2. přerušeovaná – objevuje se a mizí opakovaně
3. trvalá – trvá do vyřešení

1. pád – uzel vypadne, jinak funguje bezproblémů
2. vynechání – selhání v poslání/přijetí zprávy
3. časování – odpověď mimo daný časový rámec (pozdě)
4. chyba odpovědi – odpovídá špatně
5. náhodná (byzantská) chyba – odpovídá náhodně a v náhodném čase

25

3.6.2 Byzantské chyby

Chyba uzlu, kterou ostatní nepoznají (jedna z nejhorších variant). Uzel se chová ke každému
jinak. Dobré znázornění na problému byzantských generálů (koordinované útoky/ústupy a
(ne)poctivost generálů). Jedná se o reálný problém. může jít o bug i útok na síť.

Systém odolá byzantské chybě pokud:
• pošle-li poctivý uzel hodnotu 𝑋, systém se shodne na 𝑋
• všechny poctivé uzly se shodnou na 𝑋

Obrázek 11: Problém byzantských generálů.

3.6.3 Detekování chyb a redundance

Typy chyb seřazené od nejméně závažné po nejvíce závažné.

Fail-stop – spolehlivě detekovatelné, známe stav uzlu

Fail-noisy – eventuálně spolehlivě detekovatelné, chyba je zjevná

Fail-silent – nelze rozlišit pád a vynechání (neznáme stav uzlu)

Fail-safe – o chybě nevíme nic, ale nezpůsobí škodu (uzel se přepne do tzv. fail-safe módu)

Fail-arbitrary – o chybě nevím nic a nelze ji ani spolehlivě detekovat

Redundance umožňuje tyto tolerovat chyby. Může ji být několik typů, které jsou odolné vůči
rozdílným typům chyb (informační, časová, fyzická redundance).

Triple modular redundancy Definice 8

Jde o přístup kdy každý uzel má 3 repliky. Pokud se 2 shodnou považuje se výsledek
za korektní (čili až 1 může selhat). Může vézt až ke 𝑙 replikám, kdy systém přežije až 𝑘
chybných uzlů (potom říkáme 𝑘-fault tolerance).

3.7 Chord Systém

Něco jako distribuovaná hashovací tabulka (takže režim klíč-hodnota). Jedná se o peer-to-peer
systém, který má kruhovou strukturu (ring). Používají se 𝑚 bitové klíče (obvykle 128 nebo
160), kdy id uzlů jsou také z tohoto prostoru. Dohromady 2𝑚 klíčů.

Klíč 𝑘 spadá pod uzel s nejmenším id splňující id ≥ 𝑘. Takovému uzlu říkáme následovník a
značíme ho succ(k).

26

Obrázek 12: Chord systém.

Poznámka 9

Uzly evidující informace i o předchůdcích.

Je nutné vyřešit jak efektivně hledat správný uzel pro klíč 𝑘. Naivní přístup říká, že uzel 𝑝
ví o svém následovníkovi succ(p + 1). V tomto případě pokud 𝑝 obdrží požadavek na klíč
𝑘, tak požadavek přepošle dokud neplatí pred(p) < 𝑘 ≤ 𝑝 a poté správný uzel odešle své id,
protože jemu náleží klíč 𝑘. Tento přístup v průměru potřebuje projít 12 ringu (což je neefektivní
– složitost 𝑂(𝑛)).

Efektivnější řešení je použít zkratky, tzv. finger tables 𝐹𝑇id (pro uzel s id). Jde o vyhledávací
tabulku s velikostí max 𝑚. Platí 𝐹𝑇id[𝑖] = succ(id+2𝑖−1) neboli 𝑖-tý záznam v tabulce ukazuje
na následníka vzdáleného alespoň o 2𝑖−1 pozic. Pro udržení v kruhové struktuře se používá
modulární aritmetika. Pro korektní přeposlání klíče 𝑘 z uzlu 𝑝 na uzel 𝑞 využijeme:

𝑞 = 𝐹𝑇𝑝[𝑗] ≤ 𝑘 < 𝐹𝑇𝑝[𝑗 + 1]

Tento vylepšený přístup vyžaduje 𝑂(log(𝑁)) kroků, což je značné zlepšení.

Udržení této tabulky aktuální se provádí pomocí neustále opakované operace. V ní uzel 𝑞
opakovaně kontaktuje uzel succ(q + 1) a vyžádá si pred(succ(q + 1)), pokud se tato hodnota
rovná 𝑞, pak je vše správně. Pokud ne, tak někdo nový vstoupil do ringu 𝑞 < 𝑝 ≤ succ(𝑞 + 1)
a je nutné aktualizovat záznamy tak, že 𝐹𝑇𝑞[1] = 𝑝. Poté si ještě 𝑝 zkontroluje zda má 𝑞 jako
předchůdce (případně nastaví ho). Taktéž se pravidelně kontroluje zda předchůdce žije, pokud
ne je nastaven na unknown. Tyto procedury zajišťuje že Chord je pořád s velkou většinou uzlů
v konzistentním stavu.

Pokud se chce uzel 𝑝 přidat do systému je postup jednoduchý. Uzel 𝑝 kontaktuje příslušný uzel
a zažádá si o succ(p + 1). Po odpovědi se 𝑝 může připojit do kruhu.

27

Reálné fungování
V reálném světě by mohlo docházet k tomu, že geograficky blízké uzly mají dost odlišná id.
Systém se proto snaží uzlům blízko sobě geograficky přiřadit blízké hodnoty id. Pro následníky
i záznamy v tabulce je zavedena redundance – čili nemají jen jednoho (jeden záznam), ale je
jich 𝑟.

3.8 Shoda v distribuovaném systému

Systém se musí shodnout na řadě vecí (výsledek, další akce, stav, …). Pokud funguje bez chyb
je to triviální, s chybami (hodně zálěží na typu a závažnosti) se situace komplikuje. Pro shodu
potřebujeme: synchronní systém nebo omezený čas na zpráv a pořadí zpráv nebo multicast.

Poznámka 10

Shoda v DS není vždy možná.

3.8.1 Redundance

Pro řešení těchto problémů je zavedena redundance, kdy úlohu jednoho uzlu přebírá skupina
uzlů. Existují dva základní typy:

1. primární záloha – hierarchická skupina, při výpadku primárního (te nvykonává všechny
write operace) převezme roli záloha

2. replikovaný zápis – ve skupině mají všichni stejné role (plochá skupina), nemají kritický
bod, je nutná koordinace

Odolnost proti chybám Definice 11

Skupina je odolná proti chybám pokud všechny bezchybné procesy vykonávají stejné
operace ve stejném pořadí.

3.8.2 Algoritmus Flooding consensus

Základní algoritmus pro shodu pracující pouze s chybami fail-stop. Shoda se hledá v kolech,
kterých je 𝑓 + 1, kde 𝑓 je maximální počet uzlů, které mohou selhat (logicky 𝑓 < 𝑁 , kde 𝑁 je
počet uzlů v DS).

1. V každém odešle každý uzel svůj aktuální seznam návrhu (začíná se s tím, kde je pouze
jeho vlastní návrh)

2. Uzel přijaté návrhy v kole sloučí se svými návrhy
3. Každý uzel determinsticky ze seznamu nárvhu vybere volbu podle předem dané funkce
4. Rozhondutí na základě odpovědí:

1. Pokud nikdo nedostane všechny, odpovědi začíná nové kolo
2. Pokud všichni dostanou všechny odpovědi, dojde k volbě výsledku a algoritmus

skončí
3. Pokud jen někdo dostane všechny odpovědi, rozešle volbu, kterou čekající převezmou

a končí se

3.8.3 Byzantské chyby podruhé

Máme 𝑛 generálů z nichž 𝑚 je zrádných. Jak toto vyřešit? Při nákresu řešení s postupně
zvyšujícím se počtem generálů (2, 3, 4, 5, …) se dostaneme k tomu, že musí platit 𝑛 > 3 ⋅ 𝑚,
aby se systém shodl. Nevýhodou je exponenciální počet zpráv.

Existují i další možnosti řešení, které mají specifické předpoklady a omezení:

28

• HoneyBadgerBFT (digitální podpisy)
• Blockchain (cena)
• MiniBFT (specifický HW)
• Kryptografické protokoly (důvěra)

3.8.4 Raft algoritmus

Jedná se o moderní a široce používaný algoritmus (slouží jako náhrada Paxosu).Pracuje s fail-
-noisy modelem. Shoda systému probíhá pomocí distibuovaného logu operací (uzly tedy musí
být ve stejném stavu). Skupina uzlů má lídra, ten rozhoduje o commitech do logu a v případě
výpadků může být nahrazen. Využívá se většinové kvórum (𝑛 > 2 ⋅ 𝑚).

Stavy uzlů: lídr, následovník, kandidát.

Volba lídra byla zmíněna už dříve. Je nutné ještě vyřešit jako funguje commit do distribuovaného
logu.

Klient vždy posílá požadavek na lídra (případně na něj může být přesměrován z jinéh uzlu).
Tedy lídr má vždy přehled o všech operacích (i nevyřízených). Každý požadavek je zapsán
do logu ve formě ⟨𝑜, 𝑡, 𝑘⟩, kde 𝑡 je aktuální term a 𝑘 je index požadavku 𝑜 v tabulce lídra.
Raft garantuje, že operace které prošly commitem byly provedeny většinou uzlů a výsledek byl
navrácen klientovi.

Přijetí nového požadavku a distribuce logu
1. Po obdržení požadavku lídr rozšíří svůj log (délky 𝑛) o ⟨𝑜, 𝑡, 𝑛 + 1⟩
2. Lídr celý log odešle všem uzlům společně s indexem poslední commitované operace 𝑐
3. Každý příjemce si svůj log upraví podle přijatého, potvrdího lídrovi a zkontroluje, že

všechny operace až do 𝑐 včetně byly provedeny (𝑜 zatím nemůže být commitováno)
4. Po přijetí potvrzení od většiny uzlů lídr vykoná operaci 𝑜 a navrátí výsledek
5. Lídr nastaví 𝑐 na 𝑛 + 1
6. Při dalším požadavku si ostatní uzly zkontrolují ono 𝑐

3.8.5 Paxos algoritmus

Autorem je Lamport. Stejně jako Raft využívá fail-noisy model. Často používaný, ale kompli
kovaný, takže byl nahrazen raftem. Stejně jako raft využívá většinové kvórum.

Typy procesů: client, proposer, leader, learner, acceptor.

Vnitřní dělení uzlů: proposer, acceptor, learner.

Předpoklady pro fungování (slabé): DS může být nesynchronní, umožňuje nespolehlivé spoje,
poškozené zprávy jsou detekovatelné, operace jsou deterministické, nejsou povoleny náhodné
chyby.

Jádro algoritmu funguje ve 2 krocích – fáze prepare a fáze accept. Pro návrh se vždy vybírá
náhodné číslo, které se používá k rozhodování v případě více návrhů (větší číslo vyhrává).
Návrhy podávají proposers a acceptors pro ně hlasují (jeden uzel může zároveň plnit více rolí).

[Vysvětlení asi v knížce nebo spíš zjednodušeně na internetu]

3.9 Replikace a konzistence

Redundance … více vzájemně nahraditelných uzlů

Replikace … Raft jako replikace stavu

29

Konzsitence … repliky musí být shodné

3.9.1 Replikace

Pro zvýšení spolehlivosti (pád uzlu, zničení dat) a výkonu. Zahrnuje v sobě redundanci (protože
replika vyřeší pád originálu), ale přináší navíc geografickou dsotupnost či rozložení zátěže. Např.
kešování, CDN, DNS. Tyto vylepšení sebou ale nesou i negativa, především jak udržet více uzlů
(míst) v konzistentním stavu.

3.9.2 Řetězová replikace

Uzly jsou uspořádány do řetězce (hlava ⇢ vnitřní uzly ⇢ ocas). Operace zápisu se provádí
na hlavu a operace čtení na ocase. Zápis se poté postupně propraguje od hlavy až na ocas.
Tento přístup zajistí silnou konzistenci (linearizovatelnost). Musíme řešit správu uzlů a jejich
selhání, ve fail-stop modelu následující:

• hlava → nahradí se následovníkem
• ocas → nahradí se předchůdcem
• uzel uprostřed → řeší centrální uzel přepojením řetězce
• centrální uzel → nutná replikace řetězce

Koncepčně jde o jiný přístup než předchozí – není zde lídr, ocas reaguje na čtení rovnou, pomalý
uzel může tvořit bottleneck.

3.9.3 Konzistence

Konzistence nás zajímá při několika kopiích jednotlivé uzlu či při proložemých read a write
operacích. Existuje několika typů, které kladou různé podmínky pro splnění (silná, eventuální,
sekvenční, klauzální, …).

Silná (striktní) konzistence … změny propagovány okamžitě; jako kdyby všichni reagovali
stejně

Sekvenční konzistence … výsledný stav odpovídá nějakámu sekvenčnímu pořadí operací

Kauzální konzistence … pokud platí 𝑎 → 𝑏, pak všichni vidí nejdříve výsledek 𝑎 a až potom
𝑏; u konkurenčních (nekauzálních) operací to je jedno

Eventuální konzistence … jednou dostaneme aktuální data, ale nikoliv hned (např. kešování);
povolení read-write konfliktů; write-write konflikty zálěží na implementaci

Kdy je konzistentní systém Poznámka 12

Pokud jednotlivé uzly DS reagují (dostatečně) stejně.

3.9.4 Několik teorému na závěr

CAP teorém Teorém 13

Uvažujme DS s replikací dat. Pozorováním zjistíme, že síťovým problémům a následnému
rozpadnutí sítě se nelze vyhnout. Když nastane rozpad můžeme zachovat buď dostupnost
(avilability) nebo konzistenci (consistency), nikdy ne obojí.

30

PACELC teorém Teorém 14

Rozšíření CAP torému. Jde o promyšlenou zkratku P paritition, A avilability, C consis
tency, E else, L latency, C consistency. Pokud dojde k rozdělení P sítě musíme vybrat
mezi dostupností nebo konzistencí, jinak (běžný provoz) volíme mezi latencí a konzistencí.

Různé varianty prostě podle vhodného rozdělení písmen.

Např. PostgreSQL distr. má PC/EC u NoSQL je to dost rozmanité.

CALM teorém Teorém 15

Consistency as Logical Monotonicity. Říká co můžeme mít bez drahé koordinace. Nedíváme
se na vlastnsoti systému, ale na vlastnosti programu. Monotónní systém lze imple
mentovat bez synchronizace při zachování konzistence. Monotónnost je pokud se
data pouze přidávají a vrství na sebe (pokud se něco jednou přídá už se to nemůže změnit).

Monotónní (povolené) operace: přidání do seznamu, sjednocení, …

Nemonotónní (zakázané) operace: minimum, maximum, množinový rozdíl, …

3.10 Globální stav v DS

Globální stav celého DS se skládá z lokálních stavů jednotlivých uzlů a kanálů mezi nimi
(zachycuje celý systém v jednom okamžiku). Lokální stav uzlu (procesu) jsou hodnoty
proměnných, alokované zdroj a stav vykonávání programu. Události v systému můžeme rozdělit
na 2 skupiny, na ty co se již staly a ty co se ještě nestaly.

Konzistence řezu Definice 16

Konzistence řezu 𝐶 (𝑎 → 𝑏 ∧ 𝑏 ∈ 𝐶) ⇒ 𝑎 ∈ 𝐶.

Posloupnost konzistentncíh řezů nám vytváří průběh výpočtu v celém DS.

Snapshot Definice 17

Globální stav DS v daném okamžiku.

3.10.1 Chandy-Lamport algoritmus

Algoritmus umožňuje vytvořit snapshot (zjistit stav) DS bez nutnosti zastavení DS.

1. Iniciátor uloží svůj stav a pošle zpráv s markerem snapshot request a začne zaznamenávat
všechny zprávy na dalších kanálech

2. Proces obdrží zprávu s markerem
1. úplně poprvé: uloží svůj stav, pošle jej iniciátorovi, dále posílá marker s každou

zprávou, začne sledovat stavy ostatních kanálů
2. poprvé na daném kanálu: uloží stav kanálu a pošle jej iniciátorovi a končín na něm

monitorování
3. Proces s markerem dostane zprávu bez markeru → musí být z okamžiku před snapshotem,

uloží ji do stavu kanálu

Kanály musí být typu FIFO. Kanály musí být jednosměrné.

31

3.10.2 Dijkstra-Scholten algoritmus

Algoritmus zajišťuje detekci ukončení. Uzel má 2 stavy – aktvní nebo skončil. Zprávy SIGNAL
(výzva počítáš/nepočítáš?) a ACK (odpověď už nepočítám nebo se hlásím jinam). Algoritmus
vytvářrí v reálném čase stromovou strukturu. Algoritmus funguje pouze pro difuzní výpočty,
což jsou výpočty, které začínají u jednoho uzlu.

Budování stromu:
1. Vytvoření hrany rodič – potomek pokud uzel 𝐴 pošle zprávu 𝐵 a 𝐵 byl do té doby pasivní,

uzel 𝐴 se stává rodičem 𝐵
2. Každý uzel si udržuje čítač, který říká kolik zpráv poslal sousedům a ještě nebyly potvrzeny
3. Poslání ACK uzel pošle rodiči pouze pokud on sám je pasivní (dokončil práci) nebo obdržel

potvrzení od všech kterým sám poslal zprávu
4. Výpočet je v celém systému považován za ukončsný pokud se kořen stromu stane pasivní

nebo pokud má čitač kořenu hodnotu 0

3.11 Distribuované transakce

Jedná se o transakce zahrnující více uzlů v DS. Obecná změna více úložišť/systémů (např.
mazibankovní převod, zápis do více různých DB). Zakládá se na klasických transakcích (nutná
speciální primitiva). Držet se ACID. Nejvíce nás bude zajímat distribuovaný commit, což je
závěrečná fáze distribuované transakce. Takové zmněny se musí provést buď všude nebo nikde
(prostě jako klasická transakce). Ke commitům je potřebný koordinátor.

3.11.1 Jednofázový commit

Vlastně se nejedná o nic co by zaručovalo správné provedení. Jde o úplně naivní řešení, kdy
koordinátor pošle commit všem uzlům instrukci a ti ji hned provedou. Jenže pokud vypadly
nebo k nim zpráva nedorazí dostane se systém do nekonzistentního stavu.

3.11.2 Dvoufázový commit

Již se jendá o použitelné rozumné řešení. Jsou 2 typy procesů – koordinátor a následovníci.
Nedokáže reagovat na selhání koordinátora. Nejvíce se používá (např. PostgreSQL PREPARE
TRANSACTION a COMMIT/ROLLBACK PREAPRED).

1. Koordinátor pošle všem VOTE_REQUEST
2. Uzel na něj zareaguje pokud je připraven tak VOTE_COMMIT, pokud ne VOTE_ABORT
3. Kooridnátor při obdržení od všech VOTE_COMMIT zašle GLOBAL_COMMIT (říká uzlům že mají

lokálně provést commit), jinak GLOBAL_ABORT

3.11.3 Třífázový commit

Řeší nedokonalosti dvoufázového. Nikdy nelze volit rovnou COMMIT nebo ABORT. Přibyde tedy
nový stav a zpráv (PRECOMMIT a PREPARE_COMMIT).

1. Koordinátor pošle dotaz jestli uzly mohou provést commit
2. Uzly odpoví YES nebo NO
3. V případě, že koordinátor neobdrží od všech YES proces končí, jinak rozesílá zprávu

PRE_COMMIT, které zajistí zápis do logu a uzamčení zdrojů, ale operace se ještě neprovádí
a odpověď uzlů

4. Pokud od všech opět pozitivní opověď rozesílá se samotná zpráva GLOBAL_COMMIT
5. Uzly provádí operace

32

Obrázek 13: Stavy třífázového commitu pro (a) koordinátora a (b) následovníka.

Pokud koordinátor vypadne uzly se domluvíme mezi sebou, buď čekají na zotavení nebo
proces ukončí. Pokud vypadne následovník, tak koordinátor čeká a je vyžadováno zotavení u
následovníka.

4 Blockchain

Umožňuje registrování distribuovaných transakcí, proto se také nazývá Distributed Ledger Tech

nology (DLT). Blockchain všechny věci (datová struktury, operace) k tomu nutné implementuje.
Obecně pracuje s tím, že nepoužívá důvěryhodnou centrální autoritu. Nemusí být vždy veřejné,
ale mohou mít nějakou míru centralizace (hybridní) či být privátní.

Základy jsou v mnoha oblasatech: kryptoměny (Bitcoin, Ethereum, Litecoin, …), DNS, IoT,
smart contracts.

Už z názvů vyplývá, že se jedná řetězec navzájem provázaných bloků. Každý blok obsahuje: data,
timestamp, hash dat (obvykle kryptografický), hash předchozího bloku (taky kryptografický) a
eventuálně další specifické věci. První blok se nazývá genesis block a nemá předchůdce (takže
nemůže mít ani jeho hash) – v tom je odlišný. Hash dat v bloku musí být snadné ověřit (takže
něco jako SHA-256).

4.1 Bloky

Mají rekurzoivní vlastnost (každý obsahuje hash předchozího kromě genesis bloku). Díky
tomuto není možné předchozí bloky měnit a narušit strukturu. Při změně bloku nebude sedět
hash ve všech následujících, takže je to snadno odhalitelné. Každý uzel může mít kopii celého
blockchainu, ale stačí mít shodu na posledním bloku. Může existovat více konkurenčních bloků,
což vede k větvení a pravděpodobnostní volbě.

Vytvoření nového bloku vyžaduje velké množství práce (model proof of work):
1. zájemce posbírá transakce do bloku
2. sestaví základ bloku
3. musí blok doplnit tak, aby vyřešil výpočetně náročnou úlohu (úloha má upravitelno

obtížnost na základě aktuálních možností sítě)

Ten kdo to zvládne první získá odměnu za blok. Následné ověření toho, že blok je validní musí
být triviální. Problémy se mohou vyskytnout se spotřebou, tvrbou poolů či rychlostí.

33

Změna bloku Poznámka 18

Změna jediného bloku by vyžadovala přepočítání všech dalších, což je vzhledem k nákladům
na vytvoření každého nereálné.

Problémy přístupu PoW se snaží vyřešit proof of stake. Místo vytvoření velkhé množství
práce se požadavuje zástava.

1. zájemce nabídne zástavu (kryptoměnu daného blockchainu)
2. systém vybere ze zájemců
3. vítěz posbírá transakce a připojí je do sítě

Ostatní validátoři ověří platnost bloku (za to získávájí odměnu). Pokud je blok OK vítěz získá
odměnu, pokud nikoliv tak ztratí zástavu a je v síti penalizován.

Vzhledem k tomu, že podvod vyžaduje mít hodně prostředků jednalo by se v podstatě útok na
sebe sama. Nevýhodou je centralizace bohatství a moci.

4.1.1 Další typy shod

Delegated PoS – volená malá skupina validátoru, hlas má váhu podle majetku

Proof of Authority – malá důvěryhodná skupina validátorů

Proof of Elapsed Time – nutný důvěryhodný HW a robustní systém práce s časem

Practical Byzantine Fault Tolerance

4.2 Merkle tree

Jedná se o speciální datovou strukturu hašového binárního stromu. Slouží k verifikaci obsahu
velkých datových struktur. Používá se v: Bitcoinu, Ethereu, gitu, BitTorrentu, btrfs, …

Obrázek 14: Merkle tree.

4.3 Problémy blockchainu

Poskládán z 5 vrstev:
1. Infrastruktura (HW)
2. Síťová vrstva – změna uzlů, šíření a ověření informace
3. Datová vrstva – bloky a transakce
4. Shoda –
5. Aplikační nástavby – kryptoměn, decentralizované aplikace, smart contracts

Řeší se konzistence, bezpečnost a především anonymita.

34

4.4 Hrozby blockchainu

1. Ovládnutí sítě (51% útok)
2. Sybil(a) útok – vydávání se za více účastníků
3. Eclipse útok – oddělení uzlu
4. Útoky na podpůrné vrstvy
5. Útoky na aktuální kryptografii pomocí kvantových počítačů
6. DDoS
7. Sociální inženýrství

4.5 Bitcoin

Autor je Satoshi Nakamoto (synonym) jehož reálná identita je neznámá. Vymyšleno jako
alternativa k fiat měnám. Bitcoinů je fixní počet (21 milionů). Na začátku odměna 50 BTC v
bloku, ale každých 210 000 bloků (≈ 4 roky) nastává havling (půlení odměn), kdy očekávaný
konec je asi v roce 2140.

1 BTC = 108 Satoshi

Jako hashovací funkci používá SHA-256 a podpis transakcí zajišťuje ECDSA. Nový blok se
vytvoří asi každých 10 minut. Dříve velikost 1 MB, dens asi 4 MB.

4.6 Ethereum

Založil ji Vitalik Buterin v roce 2015. Záměr byl takový, že blockchain může poskytovat více
než jen měnu, takže přidal decentralizované aplikace, smart contracts. Narodzíl od BTC nemá
limit, ale používá jiné metody pro omezení inflace.

Jako hashovací funkci používá Kecak-256 (modifikovaný SHA-3) a pro podpis transakcí stejně
jako Bitcoin ECDSA. Původně využíval PoW, v roce 2022 přechod na PoS, což snížilo spotřebu
o 99 %.

35

	1 Obecný úvod
	1.1 Zkouškové otázky
	1.2 Články ke zkoušce
	1.3 Pár pojmů na začátek
	1.4 Flynnova taxonomie
	1.5 Kdy a proč to dělat?
	1.5.1 Škálování

	1.6 Zrychlení výpočtů

	2 Paralelní systémy
	2.1 Synchronizace
	2.2 Vlastnosti programu
	2.3 Kritická sekce
	2.3.1 Dekkerův algoritmus
	2.3.2 Petersonův algoritmus (Tie-breaker)
	2.3.3 Bakery algoritmus
	2.3.4 Lamportův Bakery algoritmus
	2.3.5 Další algoritmy

	2.4 Synchronizační primitiva
	2.4.1 Složené atomické akce
	2.4.2 Zámek (lock, mutex)
	2.4.3 Semafor
	2.4.4 Monitor
	2.4.5 Podmíněná proměnná
	2.4.6 Bariéra
	2.4.7 Threadpool

	2.5 Synchronizační problémy
	2.5.1 Producent a konzument
	2.5.2 Čtenáři a písaři
	2.5.3 Večeřící filozofové
	2.5.4 Morissův algoritmus
	2.5.5 Problém kuřáků

	2.6 Návrh paralelního systému
	2.6.1 Fosterova metodologie

	3 Distribuované systémy
	3.1 Architektura distribuovaných systémů
	3.2 Komunikace v distribuovaném systému
	3.2.1 Midleware protokoly
	3.2.2 Remote Procedure Call (RPC)
	3.2.3 Další možnosti komunikace

	3.3 Koordinace a čas v distribuovaných systémech
	3.3.1 Skutečný čas
	3.3.2 Cristianův algoritmus
	3.3.3 Network Time Protocol (NTP)
	3.3.4 Reference Broadcast Synchronization (RBS)
	3.3.5 Logicky čas
	3.3.6 Koncept předcházení (a → b)
	3.3.7 Lamportův algoritmus
	3.3.8 Vektorové hodiny

	3.4 Vzájemné vyloučení v DS
	3.4.1 Centralizované řešení
	3.4.2 Distribuované řešení
	3.4.3 Řešení tokenem
	3.4.4 Decentralizované řešení
	3.4.5 Zookeper

	3.5 Lídr a jeho volba
	3.5.1 Bully algoritmus
	3.5.2 Ring algoritmus
	3.5.3 Raft algoritmus
	3.5.4 Algoritmus pro ad-hocObvykle bezdrátová síť bez centrálního bodu a s proměnlivou topologií sítě
	3.5.5 Dalši algoritmy

	3.6 Chyby v distribuovaných systémech
	3.6.1 Klasifikace chyb
	3.6.2 Byzantské chyby
	3.6.3 Detekování chyb a redundance

	3.7 Chord Systém
	3.8 Shoda v distribuovaném systému
	3.8.1 Redundance
	3.8.2 Algoritmus Flooding consensus
	3.8.3 Byzantské chyby podruhé
	3.8.4 Raft algoritmus
	3.8.5 Paxos algoritmus

	3.9 Replikace a konzistence
	3.9.1 Replikace
	3.9.2 Řetězová replikace
	3.9.3 Konzistence
	3.9.4 Několik teorému na závěr

	3.10 Globální stav v DS
	3.10.1 Chandy-Lamport algoritmus
	3.10.2 Dijkstra-Scholten algoritmus

	3.11 Distribuované transakce
	3.11.1 Jednofázový commit
	3.11.2 Dvoufázový commit
	3.11.3 Třífázový commit

	4 Blockchain
	4.1 Bloky
	4.1.1 Další typy shod

	4.2 Merkle tree
	4.3 Problémy blockchainu
	4.4 Hrozby blockchainu
	4.5 Bitcoin
	4.6 Ethereum

