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1 Poznamky k zakonceni predmétu

Zkouska je ustni (takze asi klasické losovani otdzek). Otézky jsou brany jako nazvy kapitol.
Jedna otézka z prvni prezentace, dalsi z druhé. Moznost néjakych dikazi (RSA nebo EC tteba).
Zapocet se 1esi s Mgr. Foltasovou a bude za odevzdani programovacich tdloh (implementace
algoritmu). Prednéska neni od 7.00, ale od 8.00, ale kon¢i stejné tzn. v 9.30. Materidly budou
komunikovany e-mailem.

1. Tyden (24. 9. 2025) — slajdy 1-32

2. Tyden (1. 10. 2025) — slajdy 33-72

3. Tyden (8. 10. 2025) — slajdy 73-89

4. Tyden (15. 10. 2025) — 777

5. Tyden (22. 10. 2025) — 777

6. Tyden (29. 10. 2025) — 777

7. Tyden (5. 11. 2025) — 777

8. Tyden (12. 11. 2025) — slajdy 160-182

9. Tyden (19. 11. 2025) — slajdy 183-210
10. Tyden (26. 11. 2025) — dalsi prezentace (slides-2) slajdy 1-28

2 Kryptografie

Jednd se o védu o utajovani zprav. Moderni metody zajistuji nasledujici:
e duavérnost dat: utajeni obsahu komunikace
e autenticnost: prijemce ma moznost zjistit puvod zpravy
¢ neodmitnutelnost: odesilatel nemuze poprit odeslani zpravy
e integritu zpravy: prijemce ma moznost zjistit zda béhem prenosu doslo ke zméné zpravy

Dalsi pojmy, které jsou nutné k pochopenf Sifer a komunikace:
o otevreny text (plain text): zpriva urcend k odeslani
o Sifrovani: uprava textu, kterd ukryje jeho obsah (neni srozumitelny)
o zaSifrovany text (ciphertext): vysledek aplikace Sifrovani
o desifrovani: prevod Sifrovaného textu zpét na otevieny
o Sifrovaci funkce (encryption function): matematickd funkce provadéjici sifrovani
« desifrovaci funkce (decryption function): matematickd funkce provadéjici desifrovani
o Sifra: oznaceni pro sifrovaci i desifrovaci funkci
o kanal (channel): komunikacéni spoj

3 Sifry
Mame 2 zékladni typy Sifer rozvedené déle — omezené sifry a Sifry zalozené na klici. Sifrovan{

zalozené na klice se déle déli na: symetrické, asymetrické a hybridni (toto rozdéleni zavisi na
vztahu kli¢).

3.1 Omezené sifry

Mira bezpec¢nosti se zaklada na tom jakym zpusobem se Sifra (jeji (de)sifrovaci funkce) pracuje.
Prakticky toto neni moc vyhodné a pouzitelné (muze dojit k odhaleni principu, pfi odchodu
uzivatel ze skupiny nutno vymeénit funkci, nemoznost standardizace, ...). prvni sifra, kterd tento
typ prekonala byla Enigma.



3.2 Sifry zalozené na kli¢i

Pouziva se tzv. Kerchoffav princip. Bezpecnost zavisi pouze na utajeni klice nikoliv utajeni
(de)sifrovaci funkce. Funkce pak muze byt zvefejnéna, coz prinasi dalsi vyhody (standardizace).
Sifer zalozenych na kli¢i mame 3 typy — symetrické, asymetrické a hybridni.

Kromé utajeni zprav resi i jiné problémy napr. autentizaci.

4 N\
Sifrovaci Sifrovany
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Obrazek 1: (De)sifrovaci proces

Nékolik zakladnich pojmi:
e M .. koneCnd mnozina vSech zprav
e (C .. konecnd mnozina vsech kryptogramt
e X .. konecna mnozina vsech klica
o e: M x KX — C .. Sifrovaci funkce
o d:Cx XK — M .. deSifrovaci funkce

Sifra zalozen4 na klici je pétice (M,C, X ,e,d) takova, Ze pro libovolny Sifrovaci kli¢ k, €
X a jemu odpovidajici desifrovaci kli¢ k; € X plati

de, (z,k,), ky) =z

pro vsechna x € M. Kratce budeme mluvit o sifre.

Tato definice nerika nic o bezpecnosti. Klidné by e a d mohla byt identita a definice by
byla splnéna.

Funkce také musi byt injektivni. Pokud by nebyla, zpuasobilo by to problém, ze bychom
nebyli schopni zpravu jednozna¢né rozsifrovat (ze 2 ruznych zprav bychom totiz dostali stejny

kryptogram).

Sifrovaci a deSifrovaci funkce obvykle zpravu zakdéduji do posloupnosti Cisel, s kterou poté
manipuluji pomoci klasikcyh matematickych operaci (s¢itdni, nasobeni, ..). Pro definovani
téchto operacich na konecénych mnozinach se pouzivdi modularni aritmetika.

3.2.1 Symetrické Sifry (private-key cryptography)

Kli¢ pro sifrovani a desifrovani je stejny (nebo je mezi nimi jednoduchy vztah). Primérné to
jsou vsechny historické Sifry. Alice a Bob maji stejny kli¢, kterym umi oba Sifrovat i deSifrovat.
Naprt. klasické (posouvaci, Vigenerova), RC2, DES, AES, Blowfish, ...

V tomto ptipadé mluvime o tajném kli¢i (neplést se soukromym u asymetrické sifry).
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Obrazek 2: Symetrické sifrovani

Postup
1. Alice a Bob se domluvi na klici
2. Alice zpravu pomoci klice zasifruje
3. Sifrovand zprava mize byt pres nezabezpeceny kandl poslana Bobovi
4. Bob zpravu desifruje pomoci stejného klice

+ Vyhody: vysokd rychlost

— Nevyhody: nebezpeéi odhaleni klice 3. stranou (ndrocnéjsi distribuce), velky pocet klicu
(slozity key management) rostouci kvadraticky ().

Autentizace za pomoci symetrického Sifrovani

Céstecné brani ttoku MITM (man in the middle). Odesila se jak zaSifrovand zpréva, tak
oteviend a jejich porovnanim muzeme ovérit Ze nebyla po cesté zménéna. Porad ale muze
utoc¢nik menit poradi vice zprav, rizné prohazovat v parech atd.

3.2.2 Asymetrické Sifry (public-key cryptography)

Vymysleno v roce 1976 3 lidmi: Martin Hellman, Ralph Merkle a Whitfield Diffie. Kli¢e pro
sifrovani (vefejny kli¢) a desifrovani (soukromy kli¢) nejsou stejné. Soukromy kli¢ nesmi byt
z verejného rozumné dobé odvoditelny (opacné to jde). Z logiky véci vefejny muze byt distri-
buovan a soukromy musi byt drzen v tajnosti. Napr. RSA, sifrovani zalozené na eliptickych
krivkach, sifrovani zalozené na zavazadlovém problému.
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Obrézek 3: Asymetrické Sifrovani

vevs

— Nevyhody: vyrazné pomalejsi (o nékolik fadu).

Postup
1. prijemce vytvori soukromy a verejny kli¢
2. soukromy si uschova, verejny zverejni
3. odesilatel zpravu zasifruje pomoci verejného klice
4. odeslani sifrované zpravy nezabezpecenym kanalem



5. prijemce desifruje pomoci svého soukromého klice
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Obrazek 4: Asymetrické sifrovani

Vytvareni verejného a soukromého klice

[TBA]

3.2.3 Hybridni Sifry

Kombinuje symetrické a asymetrické Sifrovani a bere si to lepsi z obou. Tim ze tajny kli¢ je
kratky, tak nizkd rychlost asymetrické Sifry neni znat. Pouziva se tfeba v protokolech TSL
a SSL.

verej. soukr.
klic kli¢

|

asymetricka) zasifrovany asymetricka
Sifrovaci —| S o desifrovac
funkce tajny kli¢ funkce

symetricka = 7 symetricka — ~
o 4 5 Sifrovany i 7 desifrovany
otevreny text Sifrovaci desifrovaci —
text text
funkce funkce
- J

Obrazek 5: Hybridni sifrovani

Prvnim praktickym pouzitim hybridniho Sifrovani bylo Pretty good privacy (PGP) pouzi-
vajici sifry IDEA a RSA.

3.2.4 Protokoly SSL a TLS

Jednd se o kryptografické protokoly zajiStujici bezpecnou komunikaci na internetu (diive
pouzivano v HTTPS).

P1i zahajeni komunikace zde probihd handshake, ve kterém se pouzivaji digitdlni certifikaty
(jméno serveru, verejny kli¢, certifikacni autorita). Klient muze ovéfit platnost tohoto certi-
fikatu. Klient podporuje rizné Sifrovaci algoritmy a hashovaci funkce, z kterych poté server
vybira.

3.3 Modularni aritmetika
Dulezité pojmy:
e prvocisla
e rozklad na prvocisla
o Eukliduv algoritmus
o nejvétsi spolecny délitel (a jeho vlastnosti)
¢ nesoudélnost
¢ kongruence modulo n



o mnoziny zbytkovych tiid Z,, = {[a],, | a € Z}
e inverzni prvky

o C(iselnd télesa (grupa, monoid, ...)

o eulerova funkce

» Bezoutova rovnost

4 zakladnich vlastnosti nejvétsiho spolecného délitele:

ged(a, b) = ged(b, a)
ged(a, b) = ged(—a, b)
ged(a,0) = ! |

ged(a,b) = ged(a — k- b,b)

Cinska véta o zbytcich! Theorem 2

Necht' jsou nq,n,, ...,n; po dvou nesoudélnd nenulova prirozend ¢isla, tzn. gcd(ni, nj) =1
pro i # j. Déle necht je aq,a,, ..., a; € N. Pak systém konfiguraci

x = ay(mod n,)
T = ay(mod ny)
x = ag(mod ny,)

je Tesitelny. Jsou-li ¢ a ¢’ FeSeni tohoto systému, pak plati

c=c'(mod ny -ngy ... ny)

[Tady by se dala napsat tada dalsich véci, které jsou zminény predevsim v prezentacich nebo je
zndme z jingch predméti. ]

4 Klasické sifry

Jednd se o symetrické Sifry. Pro zjednoduseni pouzivame anglickou abecedu s 26 pismeny (A,
B, .., Z), ktera jsou kddovany poradovym ¢islem — A — 0, B — 1, ..., Z — 25. Pocitdme tedy v
Zog, ale obecné vSechny sifry se daji zobecnit na abecedy s n symboly (tedy Z,,).

Mame dva typy déleni sifer na:
1. monoabecedni
2. polyabecedni

a nebo
1. blokové sifry
2. proudové Sifry

4.1 Monoabecedni Sifry

Prvky mnozin M a € jsou jednotlivé symboly abecedy. Tedy jediny symbol abecedy je mapovan
sifrovaci funkci na jediny symbol. Napiiklad Caesarova Sifra.

ITato véta se pouziva pii rychlém umocnéni v RSA.



4.1.1 Posouvaci Sifra

Pismeno je posunuto o urcity pocet pozic, ktery je dan klicem (v Caesarové siffe je k = 3).
Kryptoanalyzu a prolomeni provadime hrubou silou. Tim, Ze existuje pouze 26 kli¢a, tak v
pruméru kli¢ odhalime po 13 pokusech (%), tedy Sifra neni bezpecn4.

Posouvaci sifra Definice 3
Necht M = € = K = Zyg. Pro k € X definujeme Sifrovaci funkei

e(r,k)=x+k
a desifrovaci funkci

d(y, k) =y —k.

4.1.2 Afinni Sifra

Mapovani se provadi pomoci funkce e(x, k) = ax + b, kde k = (a, b). Funkce musi byt injektivni.
Z definice si vSimneme, ze jde o specidlni pripad posouvaci sifry (a = 1,k = b). Jestlize bereme
(a,b) € Zog X Zqg, pak existuje 312 ruznych klict (velmi malo), protoze a musi byt nesoudélné
s 26 (viz podminka ged) a b vybirame libovolné => 26 - p(26) = 26 - 12.

Afinni Sifra Definice 4
Necht M = € = Zyg, K = {{a,b) € Zog X ZLog | ged(a,26) = 1}. Pro k = (a,b) € X definu-

jeme sifrovaci funkci
e(r, k) =ax+b
a desifrovaci funkci

d(y,k) =a " (y—b).

Injektivnost afinni Sifry Poznamka 5

Funkce e(x, k) = ax + b je injektivni, jestlize ged(a,26) = 1.

4.1.3 Substitucni Sifra

Pismeno abecedy je mapovano na jiné pismeno stejné abecedy podle dané permutace této

abecedy. Pripomenout si co je to permutace. Obé predeslé sifry jsou specidlnim pripadem

substituéni. Je zhruba 4 - 10%¢ kli¢t1, coZ je sice hodné (nestaci brute-force 1itok), ale pofdd nent

bezpecnd (méme i jiné metody nez hrubou silu viz déle).

Substitucni Sifra Definice 6

Necht M = € = Zqyg, K = {7 | 7 je permutace 26}. Pro 7 € X definujeme Sifrovaci funkei
e(x,m) =m(x)

a desifrovaci funkei

d(y,m) = 1 (y).




4.2 Polyabecedni Sifry

Prvky mnozin M a € jsou posloupnosti symboli abecedy urcité délky. Tedy symbol abecedy
je mapovan na jeden z nékolika symbolia. Napriklad Vigenerova sifra. Jsou o néco silnéjsi

(bezpecnéjsi).
4.2.1 Vigenérova Sifra

Polyabecedni Sifra. Existuje 26™ ruznych klica délky m, ale poradd neni bezpecna (opét kvuli

jinym metoddm kryptoanalyzy).

Necht M = € = X = Z35;, m € N. Prokli¢c k = (ky, ..., k,,) € X definujeme Sifrovaci funkci
e(x, k) = (x; + ki, + k)

a desifrovaci funkeci
Ay, k) = (y1 =k, Yy, — k)

Pro vSechna x = (x4, ...,z,,) € M,y = (Y1, ..y Ypm) € C.

Proudové Sifry Blokové sifry

Pomoci klice k € X je generovan klicovy proud (keyst- Vsechny predchozi jsou blokové.
ream) z = zyzy'+%,. Takze pak pro kazdy znak se pouzivda Neboli vSechny prvky z M jsou
jiny kli¢ pravé z onoho proudu. Generovani klicového Sifroviany pomoci jednoho klice.
proudu miuze byt synchronni — generovian nezavisle na

sifrovaném i puvodnim textu nebo asynchornni — vyuzije

se Sifrovany nebo plivodni text.

4.3 Proudové sifry

Vsechny do ted’ zminéné sifry byly blokové, coz znamend zZe vSechny prvky z oteviené zpravy
jsou Sifrovany pomoci jednoho klice. Zatimco u proudovych Sifer je generovan klicovy proud
(keystream). Muze byt generovan synchronné (nezévisle na Sifrovaném i puvodnim textu) nebo
asyncrhonné (s vyuzitim Sifrovaného nebo puvodniho textu).

Klicovy proud Poznamka 8

Klicovy proud je néco jako potencidlné nekoneény retézec.

Nékolik zakladnich pojmi:
e M .. mnozina zprav
e ( .. mnozina kryptogrami
e X .. mnozina klicu
£ ... abeceda klicového proudu
g: X — £ .. generator klicového proudu
e e: M x £ — C .. sifrovaci funkce
d:C x L — M .. desifrovaci funkce

10



gk) =k k- k..

Proudova sifra je sedmice (M,C, X, £, g,e,d) takova, ze pro libovolné z € £
d(e(x,z),z) ==

pro vsechna x € M.

4.3.1 Linear feedback shift

Metoda generovani klicového proudu (drive ¢asto ve vojenskych). Pracuje nad abecedou

Kli¢ je slozen 2m hodnot (k = (kq, ..., k,,,, Cgy ---s €1 )- Pro dany kli¢ k rekurzivné vygenerujeme

ey iy

klicovy proud z = 2,2,
z;=k;prol <i<m

m—1
Zitm = ch-ziﬂ- pro ¢ >1
7=0
Pro komponenty kli¢ nesmi platit, Ze bud se sobé nesmi rovnat k a taky nemusi byt 0 nebo ¢

(stejné i s nulou).

Hardware implementace pomoci linear feedback shift registru (LFSR) a néasledujicich 6 krocich
1. inicializace bitt registru

bit b, se pouzije jako dalsi hodnota klicového proudu

pocitd se linedrni kombinace B = cyb; + ¢;05 + ... +¢,,_1b,,

bity b,, ..., b,,, se posunou o 1 pozici doleva

poslednimu bitu b, se pritadi vypocitana hodnota B

o Tt W

pokracuj na kroku 2

Uvazujme m =4 a k= (1,0,0,0,1,1,0,0). Vypocitejte nékolik prvnich hodnot klicového
proudu (to je to z).
Kdy se hodnoty zacnou opakovat? Po 15 cislech. Podle Chat GPT je 2™ — 1 mazimdlni

délka.
Jak vypada LSFR?

4.3.2 Asynchornni proudové Sifry

Kazdy prvek (kromé prvniho) kli¢ového proudu je vypoéitan za pomoci prvku predchoziho.
Vyhodou je, ze se hodnoty nebudou opakovat.

11



Necht M = € = X = £ = Zyg. Autokey 8ifry je proudovd sifra takova, ze

pro kli¢ k € X a zpravu x, x4 plati g(k) = 2,29+, kde 2y =k a z; = x,_; proi > 2,
pro libovolnou hodnotu z € £ definujeme sifrovaci funkci

e(r,z) =z +z
a desifrovaci funkei
dy,2)=y—=z

pro vSechna x € M,y € C.

5 Kryptoanalyza klasickych sifer

Pokud vime jak sifra funguje je jeji prolomeni vyrazné snazsi, tzv. Kerckhoffiv princip. Logicky

tim neuvazujeme prolomeni omezené Sifry. Mame nékolik typt utoki, v zavislosti na tom jaké

informace jsou k dispozici. Ve vsech pripadech je snahou ziskat klic.

1. Ciphertext only attack — zname zaSifrovanou zpravy

2. Known plaintext attack — zname puvodni i ji odpovidajici zasifrovanou zprav

3. Chosen plaintext attack — docasny pristup k sifrovacimu kryptografickému modulu —

muzeme vybrat libovolnou zpravu a tu zasifrovat

4. Chosen ciphertext attack — docasny pristup k desifrovacimu kryptografickému modulu

— muzeme vybrat libovolny kryptogram a ten rozsifrovat

Piedpoklad. Casto je analyza zaloZena na statistickych vlastnostech daného jazyka. Uvazu-

jeme anglicky jazyk (s 26 znaky) a neuvazujeme mezery (je to snazsi).

Statistické vlastnosti anglictiny Poznamka 12

Beker a Pipe pro anglicky jazyk zjistili nasledujici vlastnosti:

pismeno E se vyskytuje s pravdépodobnosti asi 0,12

pismena T, A, O, I, N, S, H, R mezi 0,06 a 0,08

pismena D, L asi 0,04

C, U M W, F, G,Y, P, Bmezi 0,015 a 0,028

V, K, J, X, Q, Z asi 0,01

nejpouzivangjsi digramy: TH, HE, IN, ER, AN, RE, ED, ON, ES, TS, EN, AT, TO,
NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF,..
nejpouzivangjsi trigramy: THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS,
ETH, FOR, DTH, ..

Postup. Najdeme v kryptogramu znak s nejvétsi cetnosti, ten je pravdépodobné zasifrovanym

pismenem E. Obdobné pokracujeme pro dalsi skupiny pismen, pripadné i digramy a trigramy.

5.1 Kryptoanalyza Vigenérovy Sifry

Nejdrive musime zjistit délku m klic¢e. K tomu méame 2 testy — Kasiského test a Friedmaniv test.
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5.1.1 Kasiského test

Pochazi nékdy z obdobi roku 1840-1860. Riké, 7e stejné segmenty puvodni zpravy budou
zaSifrovany do identického kryptogramu, pokud je jejich vzdalenost § celoc¢iselnym nasobkem
délky klicového slova m, tzn. pokud plati m | &

Postup. Hleddme identické segmenty o délce alespon 3 v kryptogramu a ukladame jejich
vzajemnou vzdalenost d,. S velkou pravdépodobnosti se totiz jednd o zaSifrované identické
segmenty puvodni zpravy. Pokud tomu tak je, pak plati m | §, pro vSechna i z ¢ehoz plyne, Ze
m déli nejvétsiho spoleéného délitele ¢isel §; (oznacime ged(d;)).

Otéazkou je jak ziskdme m? Viz priklad nize.

e QOtevreny text: the primary weakness of the Vigenere cipher is evidently the repeating
nature of the key

e Klic: abed

o Kryptogram (mezery jsou na svych mistech): TIG SRJODRZ YHALPHST QI TIG
YIHGQESG FIQJHR JU HVJFHNUNB TIG UEQGDTJPJ NBVXRF QI TIG
NEZ?

o Vzdjemné vzdalenosti jsou §; = 20,9, = 28,65 = 20 a m = ged(20,28) =4

5.1.2 Friedmanuv test (Kappa test)

ZaloZen na tzv. indexu koincidence (oznacovany jako #£).

Uvazujeme fetézec x nad néjakou abecedou. Index koincidence I(x) Fetézce x je pravdépo-
dobnost, ze dva ndhodné vybrané prvky tohoto retézce jsou identické.

Predpokladejme, ze se v Tetezci x vyskytuje znak A n krat, znak B n,krat, .., znak Z nyg
krat. Kolika zpiisoby miizeme vybrat identickou dvojici ¢tého znaku? Je to % krat. Plati
nasledujici rovnost, kde n je délka Tetézce x.

2?21 n; - (n; —1)
n-(n—1)

I(x) =

Miuzeme provést vypocet indexu koincidence libovolného anglicky psaného textu. Zname ptib-
lizny vyskyt vSech 26 znakt z abecedy.

A, p; = 0,082
B,py = 0,015
C,ps = 0,028
Z, p26 == 00, ].

Pak plati tento vzorec

2Zvyraznén je stejny kryptogram.
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26
I(eng) ~ pf +p3 + ... + p3g = ZP? = 0.065
=1

ktery 1iké Ze v anglickém textu jsou 2 ndhodné zvolené znaky s pravdépodobnosti 6,5 % stejné.
U néméiny je to cca 7,6 % a u ndhodné generovaného textu (z anglické abecedy) je to 3,8 %
(asi polovina angli¢tiny).

5.1.3 Index koincidence

Theorem 15

Index koincidence je tim mensi, ¢im je text nepravidelnéjsi (rozlozeni cCetnosti znaku
rovnomernéjsi).

Vliv Sifrovani a na index koincidence je rozdilny u polyabecedni a monoabecedni Sifry.
Tim Ze monoabecedni Sifry jen permutuji znaky, tak index koincidence zustava stejny jak pro
plaintext tak i kryptogram. U polyabecedni Sifry zalezi na kli¢i (jeho délce). Cim je kli¢ delsi,
tim se koincidence snizuje. Index koincidence tedy umi urcit zda-li se jedna o polyabecedni nebo
monoabecedni Sifru.

5.2 Kryptoanalyza LSFR proudové Sifry

Predpokladame known plaintext attack — zndme puvodni zpravu z,...x,,, zasifrovanou zpravu

Lnsy

Yp..-Y, 1 pocet bitlh m. Prvnich n znak klicového proudo spocitdme jako

7

z; = (y; —x;)mod 2 = (z; + y;) mod 2

a pro 1 <1i <m plati
m—1
Ziem = Z ¢; " %y ;mod 2
3=0

pro vypocet celého proudového klice potfebujeme koeficienty cy, ..., c,,_;. Z toho vyplyva, ze
pocitadme soustavou m rovnic o m neznamych

Zma1 = Cp2p T C129 + oo+ €12,

Zmya = CoZp T C123 T o+ Cp 124
Zom = CoZm T C1Zmq1 T - T Cp 12001

5.3 Pravdépodobnost

Jako opakovani je zminéno v prezentacich, pfipadné predméty KMI/DISK1 a KMI/DISK2.
Tady vypisu jen néjaké zakladni pojmy co by mél ¢lovék chapat pro dalsi kapitoly.

o elementarni jev

e pravdépodobnostni prostor
o jev

e mnozina jevi

o vzajemneé neslucitelné jevy

e o-algebra

e pravdépodobnostni mira

¢ distribuce pravdépodobnosti

14



¢ podminénd pravdépodobnost
e apriorni a aposteriorni pravdépodobnost
¢ nahodna proménna

P(A|B) = W

5.3.1 Bayesova véta

Pozor na zaménéni P(A|B) a P(B|A), protoze obecné jsou tyto pravdépodobnosti ruzné. Vztah
mezi nimi udava pravé Bayesova véta, kterou budeme dale vyuzivat u perfektni bezpecnosti.

P(A) - P(BJA)

PAIB) = =55

Néhodna proménnd X je dvojice (X', pq), kde X je konecny prostor elementarnich jevu
a py je distribuce pravdépodobnosti na X'. Pravdépodobnost, ze ndhodnd proménna X

nabyva hodnoty x € X se znad¢i p(X = x).

[Zdé opét moznost dostudovat Tadu dal§ich véci, které jsou bud’ v prezentacich mebo jingch
predmétech. ]

6 Perfektni bezpecnost

Méame 2 typy bezpecnosti kryptosystému — teoretickd bezpecnost (dnes také perfektni nebo
informacné-teoretickd) a praktickd bezpecnost (dnes vypocetni bezpecnost).

6.1 Vypocetni bezpecnost (computational security)

Kryptosystém povazujeme za takto bezpecny, pokud nejlepsi existujici algoritmus vyzaduje pro
jeho prolomeni n kroku (kde n je dostateéné vysoké ¢islo). Ale uz z tohoto je jasné, ze je tézké
to prokézat, proto se uvazuje vzdy k néjakému konkrétnimu typu tutoku.

6.2 Dokazatelna bezpecnost (provable security)

Tzv. bezpecnost vzhledem k redukci — jestlize je mozné kryptosystém prolomit, pak je mozné
vyresit néjaky znamy obtizny problém. Napi. RSA je dokazatelné bezpecény jestlize dané ¢islo
(modul) nelze faktorizovat v polynomickém case.

6.3 Perfektni bezpecnost (unconditional security)

Oznacime tak kryptosystém, jestlize itoénik neni schopen ziskat z kryptogramu zddnou infor-
maci o plaintextu ani s vyuzitim neomezenych zdroju. K presné formulaci podminky vyuzijeme
poc¢tu pravdépodobnosti. Prekvapivé takovy systém opravdu existuje.
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Z pozorovani plyne, zZe jestlize p(M = m | C = ¢) = p(M = m), pak pravdépodobnost, Ze byla
sifrovana zprava m za podminky, Ze byl ziskan kryptogram c, je stejnd jako pravdépodobnost
vybéru zpravy m bez znalosti kryptogramu c.
Kdy je kryptosystém perfektné bezpecny? Definice 19
Jestlize plati

p(M =m|[C =c)=pM =m)

pro vSechna m € M a c € C.

M a C musi byt nezavislé nahodné proménné.

Vlastnosti perfektni bezpecnosti jsou:
1.p(C=c| M =m)=p(C =c)
2. kazda zprava muze byt zaSifrovana na libovolny kryptogram
3. |X| =€) = M|

Poznamka 20

Pro dosazeni perfektni bezpecnosti prekvapivé staci vhodné pouzit posouvaci Sifru.

Perfektné bezpec¢na posouvaci sifra Definice 21

Predpokladejme posouvaci Sifru nad Z,,. Kazda zprdva m € M je Sifrovana pomoci
nahodné vybraného klice k € X tak, ze p(K = k) = 1. Takova posouvaci Sifra je perfektné
bezpecna.

[Na slajdu 128 dikaz.] O

Shannonuv teorém Theorem 22

Necht |X| = |C| = |M|. Kryptosystém je perfektné bezpecny pokud jsou splnény nésledu-
jici podminky:
1. kazda zprava m € M je sifrovana pomoci ndhodné vybraného klice k € X tak, ze
(K =k) =z
2. pro kazdé m € M a c € € existuje pravé jeden kli¢ k, takovy, ze e(m, k,) = c.

6.3.1 One-time Pad (Vernamova Sifra)

Autor je Gilbert Standford Vernam (také autor proudové sifry). Pivodné pro Sifrovani telegraf-
nich zprav. Vyuziva aritmetiku modulo 2. KIli¢ je stejné dlouhy jako plaintext a je pouzit pouze
jednou (z toho nazev one-time). Nevyhodou je mnozstvi klicu, které se musi pouzivat a jejich
nasledna distribuce.
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Necht |M|=1|C| = |X|=Z5,m € N. Pro kli¢ k= (kq,....k,,) € X definujeme Sifrovaci
funkci

e(x, k) = (v +kyy.ooyx,, + k),
a desifrovaci funkci

d(ya k) = <y1 + klv s Ym =+ km>7

pro vSechna x = (z1,...,2,,) € M,y = (Y1, .., Ypn) € C.

7 Falesné klice
Predpoklad: Snazime se najit klic. Predpoklddame, ze: mame neomezené zdroje, pouzivame
anglictinu a uvazujeme tutok ciphertext-only attack.

Jak pozname, ze odhaleny kli¢ je spravny? Pokud desifrovani za pomoci nalezeného klice dava
smysluplny text. Na druhou stranu vice kli¢ti mize jediny kryptogram rozsifrovat na smysluplny
text. Toto se neda nijak odhalit a pravdépodobnost na spravny klice je dana jejich nalezenym
poctem.

Falesny klice (spurious key) je nespravny kli¢, ktery deSifruje kryptogram na smyslu-
plny text.

Snazime se urcit jak dlouhy kryptogram potfebujeme, aby byl pocet falesnych klict nulovy.
Nejkratsi takovou délku oznac¢ime jako vzdalenost jednoznaénosti (unicity distance).
Klicova ekvivokace (prumérna mira nejistoty, ze kryptogram byl zaSifrovan urcitym klicem) a
redundance jazyka (nadbytecnost v jazyce) jsou dva pojmy, které k tomu potfebujeme a souvisi
s prirozenym jazykem. Oba pojmy vychdzi z entropie?

Theorem 25

Dvé ndhodné proménné X a Y jsou nezavislé jestlize plati E(X|Y) = E(X).

7.1 Entropie

Zarizeni generujici posloupnost symbolua, kde vystup v jednom okamziku neovliviiuje vystup v
dalsim okamziku.

Jak moc jsme prekvapeni ze se objevi i-ty symbol. Zapsano matematicky:

kde F, je pravdépodobnost objeveni se i-tého symbolu.

3tzv. mira piekvapeni, Ze se objevi i-ty symbol —log,, (F,)
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Zéklad logaritmu urcuje jednotku. Obvykle n = 2 a nazyva se shannon nebo bit. Pouziva se
protoze je klesajici a ma asymptotu z = 0.
Priklad 27

Jestlize produkujeme t¥i symboly A, B, C se stejnou ¢etnosti, je pravdépodobnost vyskytu
kazdého z nich 3. Tedy mira prekvapeni se spocita jako —logy(3) = 1,585.

Pokud bychom méli jen 1 symbol, tak by pravdépodobnost byla 1 a platilo by, ze
—1log,(1) = 0. Cili vitbec nés nepiekvapi, Ze se objevi pravé onen jediny symbol.

Entropie diskrétni nahodné proménné Definice 28
Je definovana jako primernd mira prekvapeni neboli: [TBA]
Plati nésledujici vztahy:

« E(X|Y)=E(X,Y)—E(Y)
e X aY jsou zavislé proménné pravé tehdy kdyz E(X | Y) = E(Y)

7.1.1 Entropie kryptosystému

Uvazujeme ndhodné proménné:

° M:<M7p]\/[)
° KZ(‘%?Z)X)
® C:<€7p€)

a zajima nds entropie téchto tii proménnych E(M), E(C) a E(K).

Na zakladé téchto véci muzeme entropii aplikovat na konkrétni kryptosystém a spocitat presné
¢iselné hodnoty.

Priklad entropie kryptosystému Priklad 29

m kryptosystém z prikladu o perfektni bezpeénosti

» M={a,b};pM=0a)=7], pM=0) =3}

n IC = {ki, ko, ka}; p(K = k1) = 5, p(K = k) = p(K = k3) =

s C={1,2,34}p(C=1)=§ p(C=2)= 5 p(C=3) =1, p(C=4) = 3
m z definice entropie vypoéitame:

E(M) = —{log,; — 3log, 7 = 0,81
E(K) =15
E(C) =185

7.1.2 Klicova ekvivokace

Podminénd entropie F(K|C) se nazyva klicovd ekvivokace. Dé se prelozit jako nejistota nebo
neurcitost (udava totiz prumérnou nejistotu klice kdyz zname néjaky kryptogram).

Plati pro ni tento vzorec: E(K|C) = E(M|C + (E(M))
7.1.3 Entropie prirozeného jazyka

Pokud mame véty v prirozeném jazyce, tak se jednd v podstaté o véty generované zdrojem s
nenulovou paméti (slova/pismena maji mezi sebou souvislost podle predchozich). Z tohoto se d4
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vycist Ze zdroje produkuji znaky s néjakou pravdépodobnosti. Entropii F; prirozeného jazyka
L muzeme shora omezit:

E;~E(M)=— Y P(M=m)-logP(M =m)
meM

Existuje i korelace mezi jednotlivymi pismeny textu

E(M?
i~ BT

E(M?)

Pro angli¢tinu plati E(M) = 4,19 a =5

=3.9.

Pokud bychom brali n-gramy textu mohli bychom ¢islo zpresnovat

E(M™

n—o00 n

Prirozeny jazyk mda i pomérné vysokou redundanci (angli¢tina cca 75 %). To neznamend, ze
bychom 75 % znaku mohli vypustit, ale muZzeme zkonstruovat Huffmanuv kéd s kompresnim
pomérem 4:1.

7.1.4 Pocet faleSnych kli¢ia

Falesny Kklic¢ je kli¢, ktery transformuje zaSifrovany text na smysluplnou zpravu, ale nejedna se
o zpravu, kterou odesilatel opravdu odeslal.

Theorem 30

Predpokladejme kryptosystém, pro ktery plati |C| = | M| a kazdy kli¢ je vybiran se stejnou
pravdépodobnosti. Pak pro kryptogram délky n (kde n je dostatecné velké) plati:

S, > |K’

—— — 1.
"= MR

kde s,, je pocet falesnych klich a R; je jejich redundance.

7.1.5 Vzdalenost jednoznacnosti kryptosystému

Zvysovanim délky kryptogramu ziskava utoc¢nik vice informaci o oteviené zpravé. Pri urcité
délce n; jich méa dostatek k jednozna¢nému urceni pravého klice. n, nazveme vzdalenost
jednoznacnosti. Plati tento vzorec

N logy | K|
"0~ R log, | M
L og2| |

Pro anglicky jazyk a substitucni Sifru by byl vysledek 25. Jinak feceno ttocnikovi staci zasif-
rovany text o délce 25 znaku, aby byl schopen jednoznac¢né urcit kli¢ k celé zprave.

Cim vétsi ny je, tim lepsi. ZvétSeni se d& provést zmensenim R;, coz miizeme udélat pomoci
komprese otevieného textu (vynechéni u po g nebo vynechéni nékterych samohlések).

7.1.6 Ekvivokace zpravy
D4 se tak oznacit vzorec E(M|C).

Nezajima nas celkovy absolutni pocet faleSnych kli¢u, ale jejich priumérny pocet.
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8 Soucasné symetrické Sifry

DES a AES jsou dvé soudobé symetrické sifry. Jsou to tzv. iteracni blokové Sifry (opakuje se
v ni pouziti néjakd funkce v rdmci mnoha iteraci). Pro zvySeni bezpecnosti kryptosystému se
pouzivaji dvé déale vysvétlené operace — konfize a difize.

Konfuze je operace snazici se skryt vztah mezi kryptogramem a pouzitym kli¢em (napr. v DES
a AES pomoci substituce).

Diftize je myslenka, Ze znak plaintextu by mél ovlivnit co nejvice znaku kryptogramu (napr.
dnes zména 1 bitu plaintextu ovlivni asi % bitu kryptogramu). V DES se jednéd o S-boxy kde 1
bit vstupuje do vice boxii.

Klasické sifry vyuzivaji pouze konfiizi. Moderni Sifry pouzivaji obé operace zietézené.

8.1 Data Enycryption Standard (DES)

Je zalozena na Feistelové sifre. V ni je Sifrovani provadéno iterativné v tzv. runddch. V tomto
pripadé nemusi byt Sifrovaci funkce invertibilni kvuli poskladéni vzorce Sifrovani (XOR).

Invertibilita Sifrovaci funkce Poznamka 31

Nutné myslet na to, zZe Sifrovaci funkce by méla byt invertibilni. Abychom mohli provadét
i desfirovani.

8.1.1 Feistelova sSifra

Blokové Sifra. Blok m € M je rozdélen na 2 poloviny L, a R,. Sifrovini provadéno v iteracich
(runddch). Cim vice rund tim bezpetnéjsi. Vypoéet i-té rundy

Li=R;
Ri=1L; & f(k; R;_y)
Po provedeni rund se Sifrovany blok ziska slozenim L, a R,.

Rundovn{ funkce nemusi byt invertibilni’. Sifrovani i deSifrovani mé stejnou podobu. Z téchto
faktl plynou 2 vyhody — je mozné pouzit libovolnou rundovni funkci a implementace Sifrovaci
a desifrovaci funkce je stejnd (jen se rundovni klice pouzivaji v opacném poradi).

Jde o blokovou, bitové orientovanou Sifru (pracuje nad Z5*, kde m je délka bloku). Tim, ze je
zalozena na Feistelove Sifre tak:

e pocet rund = 16

e pocet rundovnich klica = 16

e délka bloku = 64 bitt

o délka klice = 56 (64) bitu (kazdy 7 bit se dopliuje 1 paritnim bitem)

o délka rundovnich klica k, ..., ky5; = 48 biti.

‘Invertibilni funkce je takova funkce ke které existuje funkce inverzni.
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Pred prvni a posledni rundou se provadi permutace (ty nemaji vliv na bezpecnost, byly pridany

pouze pro lepsi HW v té dobé).

4 N\

[ Plaintext block |

Iterate 16
times F |—K;

D
[ Li | R |
L

| Ciphertext block ]

Obrazek 6: Blokové schéma DES.

DES konkrétnim zpusobem definuje rundovni funkci F', coZ je jeji nejvétsi prinos (zbytek stejny

jako Feistelova sfira).

Postup

1.
2.
3.

=

inicializace: pocatec¢ni permutace

rozdéleni na 2 bloky: 6¢ bitt rozdéleno na poloviny L, ; a R,_;

expanzni permutace: 32 biti se permutuje a expanduje na délku rundovniho klice (48
bit1)

XOR s rundovnim klicem: jediné kde se pouziva rundovni kli¢

substituce pomoci S-boxt: 6 bitovd hodnota vstoupi do S-boxu (ty jsou nelinedrni) a 4
bity vystoupi (nibble); 1. a 6. bit adresuji fadky, 2. - 5. adresuji sloupce; vysledkem vsech
je 8 -4 = 32 bitt

permutace pomoci P-boxt: permutace 8 nibbli

spojeni: spoji se 32 bitové bloky L, =R, ; a R, =L, ; & f(k;, R,_;)

konec¢na permutace

Rundovni funkce se aplikuje v krocich 3. az 6 (viz obrazek).

- J
Obrézek 7: Mapovani bita v DES $iffe (3. az 6. krok v postupu).
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8.1.2 Tvorba rundovnich kli¢a

Maji délku 64 bitl, po odebrani paritnich biti / [Key i N
(8., 16., 24., ... bit) se ziskd 52 bitovy klice k. | il |
Ten se pak déle déli na 2 poloviny (i a D,. Pro | [ )
kazdou rundu plati k<4 —
C; = RL;(C;_y) s oee
Subkey 2 < — EC?
(48 bits)

Subkey 15
(48 bits)

Subkey 16
(48 bits)
-

Obrazek 8: Tvorba rundovnich kli¢ta

Délka klic¢e 56 bitu se rychle stala nedostatecnou. Bylo nutné vylepSeni. Dvé varianty — 3DES
(pouzit{ t¥{ Sifer DES DES — DES™! — DES) nebo two key 3DES (navic se pouziji 2 klice).

8.2 Advanced Encryption Standard (AES)

Vyrazné zvétsena délka klice a je také voli- (7 N
telnd (128, 192, 256 bitu) a podle ni se méni Plaintext e Plaintext
pocet iteraci (rund; 10, 12 nebo 14). Neni 4___W(t,3) iy
bitové orientovand, ale bajtové orientovana. v 2
Pouziva se polynomidlni aritmetika (kvuli to- B ) ‘ = E — ‘ )
mu Ze to jsou bajty) nad prvociselnymi télesy. % =
Standard AES vznikl ze Sifry Rijndael od bel- . —3
gickeyh kryptologii. Oznaceni podle pouzité Add round key W7 —p| Addround key |
délky klice. Celym procesem Sifrovani procha- . %
zi stavova matice S a matice rundovniho klice v E W
K typu 4 x 4. ] = !

®
Konfiize pomoci operace SubBytes a difize E ‘ A
pomoci ShiftRows a MixColumns (operace = 3
délaji presné to co maji v nazvu). Addm:"d =y (3639 = [ Add round key ]
Dnesni vyufiti je Siroké, napf. WPA3, VPN, = H
¢ipy v platebnich kartach, datova uloziste, E — =
Signal, BitLocker, ... =) [Ty Jp— 040
Pokud AES potiebuje hledat inverzni prvky Ciphenext Ciphertext
z polynomialni aritmetiky koukd se do tzv. - /
lookup table, kde jsou vypocitané a staci je Obrazek 9: Schéma sifry AES.

nacist.
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Rundovni funkce se sklada ze 4 operaci: 4 N

1. SubBytes — jasné definovana operace,
nelinedrni, realizuje konfizi, provadi se
ve 2 krocich (pocitani inverze s mod a Byte Sub
afinni transformace)
2. ShiftRows — realizuje diftzi, je inverti-
bilni, rotace fadku (i-ty radek se rotuje
o(i—1 ic dol
<.Z ) pozic doleva) o Shift Row
3. MicColumns - realizuje difizi, je in-
vertibilni, zajistuje vzdjemnou interakci
radkt béhem kazdé rundy
4. AddRound Key — XOR stavové matice Mix Column
rundovniho klice (po bajtech)
Add
Round
Key
- J

Obrazek 10: Operace rundovni funkce u AES.

Poznamka 32

Polynomidlni aritmetika umozni rychlé, reverzibilni a bezepcné operace. Celé je to ,mate-
maticky pruhledné

// Sifrovani B Typst

AddRoundKey(S, K_0)

for i =1, 2, ..., 9 do
SubBytes(S)
ShiftRows(S)
MixColumns(S)
AddRoundKey(S, K_i)

end for

SubBytes(S)

ShiftRows(S)

AddRoundKey(S, K_10)

// desifrovani (!Typst

AddRoundKey(S, K_10)

InversibleShiftRows(S)

InversibleSubBytes(S)

for i =9, 8, ..., 1 do
AddRoundKey(S, K_i)
InversbileMixColumns(S)
InversibleShiftRows(S)

VO 00 N O U1 AW N B

e
R ©

0 N O U1 A WN R
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9 InversibleSubBytes(S)
10 end for
11 AddRoundKey(S, K_0)

8.2.1 Sifra Rijndael

Je to itera¢ni a blokova Sifra (prevzato z DES pro posileni konfuze i diftize). Pouziva substitu¢ni
bloky. Je bajtové orientovana. Jako ireducibilni polynom® je pouzit 28 +2*+ 23 +x+1 a
posloupnost bitt 100011011 (¢islo v bitu udava zda se x na danou mocninu v polynomu nachézi
¢i nikoliv).

8.3 Polynomialni aritmetika

e Okruh jako algebraicka struktura
e Pole jako algebraicka struktura

[Opét cast rozsiritelnd z jingch predméti. ]

9 Asymetrické sSifrovani

Na zacatek zopakovani véci jak jsou rozebrané na zacatku obecné o sifrovani. U symetrického
sifrovani jsou 2 problémy — distribuce klice a prilis velké mnozstvi kli¢ii. Problém muzeme vyresit
bezpeénou vyménou klice = koncepcné dostaneme jiny systém Siforvani. V tomto priapdé
nejsou klice pro sifrovani a desifrovani stejné:

e sifrovaci kli¢ ... verejny klic¢

o desfirovaci klice ... soukromy kli¢ (drzen v tajnosti)

Priklady: sifrovani zalozené na diskrétnim logaritmu, zavazadlovém problému nebo eliptickych
kiivkach, RSA, ..

Postup
1. Prijemce vytvori soukromy i verejny kli¢

2. Soukromy klice uschova a verejny zverejni
3. Odesilatel zasifruje zpravu pomoci verejného klice
4. Zpréava je poslana
5. Prijemce ji rozsifruje pomopci soukromého klice
e N
vefejny soukr.
kI KIfe

- Sifrovaci Sifrovany desifrovaci otevreny
otevfeny text ,
funkce text funkce text

Obrazek 11: Asymetrické sifrovani

9.1 Bezpecna vymeéna klice

Méme nékolik nékolik predpokladi. Alice vlastni zdmek A, ktery umi zamknout a odemknout
pouze ona. Bob vlastni zdmek B, ktery umi zamknout a odemknout pouze on.

*To znamend, Ze nejde rozlozit na soucin jednodussich polynomi.
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9.1.1 Jednoduché resSeni

Jako prvni nas napadné jednoduché feseni popsané v nasledujicim postupu.
1. Alice uzamkne zpravu zamkem A

Takto zamcenou zpravu posle Bobovi

Bob tuto zpravu uzamkne zamkem B

Tuto (drvkarat zaméenou) zprav posle zpét Alici

Alice odemkne zamek A

Zpravu, kterd je zamcend nyni pouze zadmkem B posle Bobovi

NS s N

Bob odemkne zamkem B a dostane puvodni zpravu
Tento postup m4 ale jeden hacek, nebot’ funguje diky vztahu
e(-,ky) oe(,kg) od(-,ky) od(-,kg)=1id
ktery se nazyva komutativita, ten ale neplati obecné. Proto musime najit lepsi a funk¢i reseni.

9.1.2 Diffie-Hellmanova vyména klice

Myslenka tohot postupu je zaloZend na michani barev (viz obrazek). Tim zdasdnim krokem je
michani spoleéné a tajné barvy. Pozor ale tento proces je pouze jednosmérny.

4 N

Bob
Common paint
Secret colours
Public transport
(assume that
mixture separation
is expensive)

e
i i

\
A

\
A

(e
A

".+l.

!
A

4

Secret colours

Common secret

- J

Obrazek 12: Myslenka vymény klice podle Diffieho a Hellmana.

Pievedeno do matematiky hleddme funkei f, kterd bude taky jednosmérna. Cili vy¢isleni funkce
bude vypocetné snadné, ale vypocet inverze bude obtizny (pokud zndm jen y, tak ziskat f(x)
je obtizné). Pro nés bude takovou vhodnou funkei umocnéni v moduldrni aritmetice.

Hodnoty ¢*(mod p) Poznamka 33

Hodnoty vyrazu g*(mod p) se chovaji pseudondhodné.

Postup (Vsechna vybirand ¢isla jsou z prvociselného télesa.)
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Alice a Bob si zvoli velké vefejnd prvocisla p a g (obé € GF*(p))

Oba vyberou ndhodné tajna ¢isla a a b

Alice vypocitd A = g*(mod p) a Bob B = g®(mod p)

Alice a Bob si vyrejné vyméni A a B

Alice vypocita A’ = B*(mod p) a Bob B’ = A®(mod p)

Potom plati A” = B’(mod p) a toto ¢islo se muze pouzit jako tajny klic.

Al i

9.1.3 Diffie-Hellmantv problém
Ukazuje a zajistuje bezpecnost této vymeény. [TBA]

9.2 Generovani bezpecénych prvocisel

Prvocislo p nazveme jako bezpecné pokud ma tvar p = 2q + 1, kde ¢ je také prvocislo a nazyva se
Sophie Germainové prvocislo. Je to kvuli tomu, Ze plno ttoku je zaloZenych (a efektvnich) pokud
¢islo p — 1 jde rozlozit na plno malych prvocinitelt. Timto pozadavkem se tomuto vyhneme,
protoze ¢ je obrovské.

9.2.1 OpenSSL jako prakticka ukazka
[TBA]

9.2.2 Odbocka k modularni aritmetice

Pokud je p prvocislo, pak existuje g € GF*(p), tak ze kazdy prvek z toho je mozné vyjadrit
jako jeho mocninu. Tomuto g fikdme generator (pripadné primitivni koten).

Déle plati, ze GF*(p) ma ¢(p — 1) generatoru.

Prvociselné pole GF(p), kde GF*(p) znamend, Ze je bez nulového prvku (jde o *).

Pracujeme s problémem diskrétniho logaritmu, kde jde o nalezeni specifického exponentu.
g* = h(modp)

V praxi se spise pracuje s obecnéjsi verzi, kde g nemusi byt generator.

9.3 Siforvani zalozené na zavazadlovém problému

Existuje varianta tohoto progblému, ktera je resitelnd v polynomickém case. Dulezitou roli tu
hraje superrostouci posloupnost, coz je takova posloupnost, kde prvek musi byt vétsi nez
soucet vSech predchozich.

Posloupnost (a,,) je super rostouci jestlize kazdy dalsi prvek je vét$i nez soucet vsech
predchozich. Napi.: a; = 2,a5 =5, a3 = 12,a, = 30.

n—1
i=1
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Mame mnozinu {27,3,6,2,52,13}, kterd by tvorila superrostouci posloupnost. Celkova
hmotnost S = 70.

1. Jelikoz S > 52, tak 52 je soucésti zavazadla (TeSeni).

2. Vznikne nova posloupnost {2, 3,6, 13,27} i nova celkovd hmotnost S = 70 — 52 = 18
3. Protoze S < 27, tak 27 nebude soucasti zavazadla

4. Vznikne opét nova posloupnost {2,3,6,13} i ,nova* celkovd hmotnost S = 18

5.

V koneéném dusledku se algoritmus zastavi (protoze S = 0) a odpovi na danou otézku i
ukaze co bude soucasti zavazadla.

7 pohledu sifer je problém nasledujici:
e zprava je jako vybér polozek do zavazadla (b;)
¢ soukromy kli¢ je superrostouci posloupnost
o verejny kli¢ je obtizna posloupnost vypocitand ze superrostouci pomoci

T(M;) = M, -mmodn

(2

e kryptogram je celkovd hmotnost zavazadla.

Sifrovaci proces
1. Bob zvoli libovolnou superrostouci posloupnost a ¢isla m, n splnujici podminky (soukromy
klic)
2. Bob z ni vypocita obtiZznou posloupnost (verejny klic)
3. Alice rozdéli otevieny text (bindrni tvar) na bloky, kde pocet bitu kazdého bloku odpovida
poctu cisel v posloupnosti
4. Alice zasifruje kazdy blok pomoci vefejného klice a odesle Bobovi

Desifrovaci proces
1. Bob zna soukromy kli¢ (superrostouci posloupnost a m,n)
2. Bob vypo¢itd inverzni prvek m~* k m v (Z,,,-)
3. Bob kazdé é&islo kryptogramu vyndsobi ¢islem m~! modulo n (tyto é&isla predstavujf
hmotnosti polozek zavazadla)
4. Nakonec Bob vyftesi v polynomickém case zavazadlovy problém pro superrosstouci zava-
zadlo

Poznamka 36

Slabinou tohoto pristupu je, ze Sifrovaci funkce je linearni. Vztah tedy muze byt popsan
pomoci linearnich rovnice, pro jejichz reseni mame dobré metody.

9.4 Zpresnéni matematickych pojmu

Funkce € : N — [0,1] se nazyva zanedbatelnou funkci, jestlize pro kazdé ¢ € N existuje
ny € N takové, zZe pro vsechna n > n plati

e(n) < —

e
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Takova funkce tedy velmi rychle klesa k nule. Udalosti vyskytujici se za zanedbatelnou pravde-
podobnosti muzeme ignorovat.

V polynomickém case vydcislitelnd funkce f je jednosmérnou funkci, jestlize pro kazdy
pravdépodobnostni polynomicky algoritmus A existuje zanedbatelnd funkce e takova, ze
pro vSechna n, x,y takova, ze |x| = n,y = f(z), plati

P(A(y) = ) < e(n)

Neboli kazdy pravdépodobnostni polynomicky algoritmus, ktery vypocita z obrazu y spravny
vzor ' uspéje se zanedbatelnou pravdépodobnosti.

Domnénka Theorem 39

Domnivame se, ze existuje alespon jedna jednsomeérna funkce.

Pokud by se tato doménka potvrdila, znamenalo by to P = N P. Ale mame nékolik kandid&t,
které se zatim nepdoafilo invertovat. Jako ptiklad slouzi 3 funkce:
e umocnéni funkce f(z) = ¢® mod p pro dany generator g a provcislo p. Invertovani takovéto
funkce by znamenalo vytesit Problém diskrétniho logaritmu (DLP)
 funkce f(x) = A- B, kde |z| = n kéduje cisla A a B jejichz délka je T . Invertovani by
znamenalo vytesit Integer Factorization problem (IFP).
o nakonec funkce f(x) = z°modn, kde n je velké slozené ¢islo a e je nesoudélné s ¢(n).

Vyfteseni tohot by znamenalo vyfesit problém RSA.

9.5 Algoritmus RSA

Pojmenovéana podle tvirct. Jednd se o asymetrcikou Sifru povazovanou za velmi bezpecnou.
Pouzivd se pro bezpecnou vymeénu klict pfi symetrickém Sifrovani (tz.v hybridni Sifrovani,
protokoly SSL a TSL) ¢ digitalni podpis.

9.5.1 Generovani soukromého a verejného klice RSA

1. Zvoli se dvé ruzné provéisla p a ¢ (cca stejné velkd, obvykle alespon 1024 az 3072 bitu)
2. Vypocitd se sou¢in n = p - q (plati p(n) = (p—1)-(¢—1))
3. Nahodné se zvoli e € {1,2,...,¢p(n) — 1} tak, aby

ged(e, p(n)) =1

(e .. vefejny exponent, ¢asto je 3)
4. Pomoci rozsiteného Euklidova algortimu vypoc¢teme inverzi d = e — 1 mod p(n)
5. Pak plati
o k, = (e,n) .. vefejny kli¢
e kg =d .. soukromy kli¢
e cisla p, g se mohou odlozit, ale nikdy se nesmi zverejnit

9.5.2 Sifrovani a desifrovani

Text x € M se rozd€li na ¢iselné bloky z,, tak aby z, < n. Vztahy jsou pak nésledujici:

e(z;, k.) =z modn
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d<yz7 kd)

V prezentaci na slajdech 41 a 42 presné detailn€ rozepsand ukdzka.

Véta Theorem 41
Algoritmus RSA pracuje spravné, tzn. plati

de(z,k,), kq) =
pro libovbolny blok x otevieného textu.

K této véte je i dikaz (slajdy 43-45). O

9.5.3 Praktické aspekty a vyuziti

Praktické vyuziti algoritmu RSA rozebrano v nasledujicich prikladech.

Generovani soukromého klice
Pro vypocet modulo n potfebujeme 2 velkd prvocisla (n = p - ¢). Pokud ma mit n 1024 bit1,
pak p i ¢ musi mit po 512 bitech. Nahodné generujeme ¢islo délky, kterou chceme a provedem
test provciselnosti. Mohou nasta 2 problémy:
1. Kolik ¢isel musime v pruméru vygenerovat, abychom narazili na prvocislo?(neni pravdé-
podobnost objeveni se prvoc¢isla prilis mala?)
2. Jak efektivné provést test prvocislenosti?

Problém pravdépodobnosti objeveni prvocisla

S délkou prvocisel ubyva. Plati, ze ndhodné vygenerované ¢islo p mezi 1 a N je prvocislem s

2
. Pro

N

pravdépodobnosti cca —. Pokud testujeme pouze licha ¢isla, pak vzorec upravime na —
In N ’ In

n délky onéch 1024 biti by tedy platilo —2m ~ 1=

Problém test prvociselnosti

Existuje nékolik algoritmt, které muzeme zvolit. Existuji i deterministické pracujici v polyno-
mickém case. V praxi se najcastéji vyuziva algoritmus typu Monte Carlo, ktery vsak nevraci
vzdy spravnou odpoveéd’ = spousti se vicekrat ¢imz se snizuje pravdépodobnost nespravného
vysledku.

9.5.4 Bezpecnost RSA

Bezpecnost RSA je zaloZena na predpokladu, ze problém faktorizace IFP je pro velké moduly
obtiZny. S presnostni vSak nevime do jaké tfidy spada (pravdépodobné NP-complete, ale urcité
NP a co-NP).

9.5.5 Faktorizace Pollardova p — 1 metoda

Tak nazveme cislo n jestlize jsou mocniny prvocisel v jeho prvociselném rozkladu mensi
nez B.

Napft. n = 21600 je 33-power smooth, protoze n = 2° - 33 - 52 a vSechna tato ¢isla jou mensi
nez 33.
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Predpokladejme, ze ¢islo n =p-q a p—1 je B-power smooth a ¢ — 1 neni B-power smooth.
Pak plati (p —1)|B! a soucasné je nepravdépodobné, ze (¢ — 1)|B!. Vypocitdme a jako a =
2B'(modn). A protoze n = p - g, palti a = 25" (mod p) a a = 27" (mod q).

9.5.6 Faktorizace rozdil druhych mocnin

9.5.7 Faktorizace dalsi metody

1. Continued Fraction Method
2. Quadratic Sieve

3. Eliptic Curve Method

4. Number Fiedl Sieve

¢silo kratsi nez 256 bitth mize byt v roce 2025 faktorizovano na obycejném osobnim pocitaci.
Obvykle pouzivand délka module je 1024 az 3072 bitu.

9.5.8 Utok pomoci postranniho kanalu

Pti implementaci vznikaji postranni kanaly, které lze vyuzit k dtoku aniz bychom museli
provadét kryptoanalyzu. Napr. ¢asovy postranni kandl nebo chybvy postranni kanal.

Bleichenbachertv tutok

Utoc¢nik odychti kryptogram c. Nahodnymi konstantami s; modifikuje ¢ na fadu cisel tvaru
c; = c-s{mod, které zasle prijemci.Prijemce c¢; deSifruje a zkontroluje, zdali je formdtu 02.
Pokud neni, posle chybové hlaseni a tto¢nik zopakuje postup. Jakmile se ttocnik trefi do zpravy
formatu 02, vi ze zpravu odhalil.

9.6 Testy prvociselnosti

Pomoci téchto testu (algoritmickych postupt) jsme schopni ovérit zda se jednd o prvocislo.
Testy maji ruzné vyhody, nevyhody a specifika.

9.6.1 Fermatuv test

Zalozen na Malé Fermatové vété. Ale dé se pouzit jen pro testovani sloZenosti daného ¢isla =
neni Uplné vhodny pro test prvociselnosti. Dilezity pojem tzv. Carmichaelova ¢isla, coz jsou
¢isla, kterd timto testem projdou, ale jsou to ¢isla slozend (nastésti je jich pomérné malo).
Mala Fermatova véta Theorem 43
Pro kazdé prvocislo p a kazdé celé ¢islo a plati

aP = a(mod p)

Tzn. ¢islo (a? — a) je délitelné prvocislem p. Je zalozena na Eulerové vété.

Eulerova véta Theorem 44

Pro kazdé prirozené ¢islo n a prirozené ¢islo a nesoudélné s n plati

a®™) = 1(modn)
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n—1

Zékladni myslenka je, Ze pokud najdeme a € Z;,, pro které neplati a = 1(mod n), pak

a je svédkem slozenosti n.

Zy, obsahuje vSechna celd ¢isla a ktera splnuji:
e lezi vrozsahul <a<n
e jsou nesoudé€lnd s n

Pokud bychom postup opakovali muzeme pravdépodobnost, s kterou zndme vysledek zpres-
novat.

9.6.2 Miller-Rabinuv test

Tento test nemé Carmichaelova ¢isla. Zalozen na nasledujici vété.

Véta Theorem 46

Necht' p je prvodcislo, pro které plati
p—1=2F

kde ¢ je liché ¢islo. Déle necht a je ¢islo takové, ze ged(a,p) =1. Pak plati jedno z
nésledujicich tvrzeni
1. a? = 1(mod p)

. v, k
2. jedno z éisel a?,a??, a9, ..., a2

74 je kongurentn{ s —1 mod p

Pfi tomto testu se opét vychdzi z obménéné implikace. Necht n je liché ¢islo, pro které plati
n—1=2kq, kde ¢ je liché &slo. Cislo a takové, Ze ged(a,n) =1 se nazyva svédek slozZenosti
¢isla n, jestlize soucasné plati tyto dvé podminky:

1. a? # 1(mod n)

2. a2'q # —1(modn) pro viechna i = 0,1,....k—1

9.6.3 Rychlé umocnéni

Vyhodou symetrickych Sifer je, ze se poc¢itd s malymi ¢isly. Modulo n je obvykle veliké ¢islo.
Pro e délky 1024 bit je pro vypocet x¢modn potieba provést 21924 nisobeni (odhadovany
pocet atomil ve vesmiru je 2390). Toto je zcela zasdani, nebot bez rychlého umocnén{ by nebylo
sifrovani RSA pouzitelné. Pro urychleni se pouziva kombinace ndsobeni (MUL) a vypoctu druhé
mocniny (sQ).

SQ SQ  SQ  MUL
7\ 7\ I\

Ve
9 8 5

2 ir oot oz 9

Obecné se divame na ¢islo tak, Zze ma bindrni zapis exponentu. MUL pak vklidd na nejméné
vyznamnou pozici jednicku a sQ posouva 1 v bindrnim zapise doleva a na nejméné vyznamnou
pozici vklada 0.

SQ MUL SQ
e e N
226 — 11010 . 1 70 10 T 11 T8 o110

Slozitost rychlého umocnéni

Pocet sq operaci je roven délce bitového zapisu exponentu e (#sQ = t). Pocet operaci MUL je roven
Hammingové vdze e (Hammingové vzdalenosti e od nuly). Pro pramérny pocet MUL operaci plati
#MUL = 0,5¢ a plati tedy
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#5Q + #MUL = 1, 5t
Slozitost tohoto algoritmu je tedy linerani.

0300

Pokud by mél exponent 1024 bit, pak pfi pfimém umocnéni by se jednalo cca o 1 operaci

MUL, zatimco pii pouziti rychlého umocnéni je to 1516 operaci MUL a SQ.

9.7 Sifrovani zaloZené na eliptickych kiivkach (ECC)

velmi silné bezpec¢né.
Elipticka krivka Definice 47
Je definovano jako
y?=a%+ar+b
kde
4a® + 276 # 0

Navic definujeme i nevlastni bod O (bod lezici v nekone¢nu libovolné vertikalni pfimce).
Operace sc¢itani bodi lze definovat jak geometricky, tak algebraicky nad prvociselnymi poli.

4 N\

1 2

a a
U \_

~

yi=x3-x yi=x3-x+1

Obrazek 13: Eliptické krivky.
Pro soucty plati nékolik vlastnosti:
P+O=0+P=P
P+ (—=P)=0
(P+Q)+R=P+(Q+R)
P+Q=Q+P

Bezpecnost ECC je zalozend na obtiznosti problému jak urcit n pro dany bod P a nasobek @ =
n-P.

Postup sifrovani
1. Alice a Bob se dohodnou na prvocislu p, eliptické kiivce E a na bodu P € E
2. Bob vygeneruje klice (soukromy n a vefejny @ = n - P)
3. Alice si zvoli tajné ¢islo k (efemérni klic)
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4. Alice az8iruje zpravu M:

Clzkp

5. vznikne kryptogram (C}, Cy)

Postup desifrovani
1. Bob vypocitd M = Cy, —n - C} (ano je to kompletni)

10 Digitalni podpis

Jedna se o pripojeni identifikacich idaji autora k dokumentu. Zarucuje autenti¢nsot zpravy a
obvykle i integritu podepsaného dokumentu. Vyuziva se asymetrického sifrovani, kryptografické
hashovaci funkce a digitalnich certifikata.

Hlavni myslenka je zalozena na obraceni pouziti verejného a soukromého klice. Tento pristup
se vSak v praxi nepouzivd, protoze by trval moc dlouho.

U odeslané zprévy se spocita hash, ktery umozni ovérit jeji integirtu a urychli cely preoes (sifruje
se pouze hash).

Digitdlni certifikat je elektronicky dokument obsahujici:
o verejny kli¢
« identifikac¢ni idaj o majiteli klice
¢ informaci o certifikacni autorité

Cetrifikacni autorita vytvori digitalni certifikat tak, ze ovéri tdaje o majiteli verejného klice a
verejny kli¢ digitalné podepiSe. Tento platny podpis zarudi, ze s certifikdtem nebylo od vydani
manipulovano. Pokud tedy véfime autorité, mizeme vérit i certifikdtu jim podepsaném.

4 M\
Podepsani Overeni
AN AN
Y
Hash (otisk) *
Data (dopis)

Sifrovani Digitdlné podepsana data (dopis)
soukromym
klicem
autora
mO

E a
111101101110

Certifikat Podpis

Podpis

. b 111101101110

I

N Desifrovani
Data (dopis) vefejnym

klicem
autora
mO

N ?
101100110101 _— 101100110101
Illl

Hash (otisk) Hash (otisk)

Digitalné podepsana data (dopis) Rovnaji-li se otisky, podpis dat (dopisu) je ovéfen.

Obrézek 14: Podepsani a overeni digitalnitho podpisu
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11 Zero knowledge proofs

Motivacni priklad. Jak dokézat barvoslepému clvoéku, ktera tuzka ze dvou ma jakou barvu,

kdyz jsou az na onu barvu identické.

V tomto pristupu jsou dvé strany — prover a verifier. Ti spolu interaguji. Prover ma presvédcit
verifiera o pravdivosti tvrzeni, aniz by mu sdélil pfimy dukaz tohoto tvrzeni.

11.1 Fiat-Shamirtv identifikacni protokol

1. Bezpecnostni server (verifier) vygeneruje RSA modul n =p - ¢

2. n zverejni, p a ¢ zahodi

3. wzivatel (prover) ndhodné vygeneruje tajné ¢islo s, déle vypoéita éslo v = s2 mod n, které
posle serveru

4. pozdéji se chce uzivatel identifikovat dikazem, ze zna s, aniz by s sdélil

Jeden cyklus protokolu:
1. uzivatel ndhodné zvoli 7; dale vypocitd = = 72 mod n, které posle serveru
2. server nahodné zvoli ¢islo b € {0, 1}, které posle uzivateli
3. uzivatel vypocitd ¢islo y = (r - sb) mod n, které posle serveru
4. server ovéif 42 = x - vb(mod n)
5. pokud kongruence plati, pak server akceptuje cyklus
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