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1  Poznámky k zakončení předmětu

Zkouška je ústní (takže asi klasické losování otázek). Otázky jsou brány jako názvy kapitol. 
Jedna otázka z první prezentace, další z druhé. Možnost nějakých důkazů (RSA nebo EC třeba). 
Zápočet se řeší s Mgr. Foltasovou a bude za odevzdání programovacích úloh (implementace 
algoritmů). Přednáška není od 7.00, ale od 8.00, ale končí stejně tzn. v 9.30. Materiály budou 
komunikovány e-mailem.

1. Týden (24. 9. 2025) – slajdy 1-32
2. Týden (1. 10. 2025) – slajdy 33-72
3. Týden (8. 10. 2025) – slajdy 73-89
4. Týden (15. 10. 2025) – ???
5. Týden (22. 10. 2025) – ???
6. Týden (29. 10. 2025) – ???
7. Týden (5. 11. 2025) – ???
8. Týden (12. 11. 2025) – slajdy 160-182
9. Týden (19. 11. 2025) – slajdy 183-210

10. Týden (26. 11. 2025) – další prezentace (slides-2) slajdy 1-28

2  Kryptografie

Jedná se o vědu o utajování zpráv. Moderní metody zajišťují následující:
• důvěrnost dat: utajení obsahu komunikace
• autentičnost: příjemce má možnost zjistit původ zprávy
• neodmítnutelnost: odesílatel nemůže popřít odeslání zprávy
• integritu zprávy: příjemce má možnost zjistit zda během přenosu došlo ke změně zprávy

Další pojmy, které jsou nutné k pochopení šifer a komunikace:
• otevřený text (plain text): zpráva určená k odeslání
• šifrování: úprava textu, která ukryje jeho obsah (není srozumitelný)
• zašifrovaný text (ciphertext): výsledek aplikace šifrování
• dešifrování: převod šifrovaného textu zpět na otevřený
• šifrovací funkce (encryption function): matematická funkce provádějící šifrování
• dešifrovací funkce (decryption function): matematická funkce provádějící dešifrování
• šifra: označení pro šifrovací i dešifrovací funkci
• kanál (channel): komunikační spoj

3  Šifry

Máme 2 základní typy šifer rozvedené dále – omezené šifry a šifry založené na klíči. Šifrování 
založené na klíče se dále dělí na: symetrické, asymetrické a hybridní (toto rozdělení závisí na 
vztahu klíčů).

3.1  Omezené šifry

Míra bezpečnosti se zakládá na tom jakým způsobem se šifra (její (de)šifrovací funkce) pracuje. 
Prakticky toto není moc výhodné a použitelné (může dojít k odhalení principu, při odchodu 
uživatel ze skupiny nutno vyměnit funkci, nemožnost standardizace, …). první šifra, která tento 
typ překonala byla Enigma.
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3.2  Šifry založené na klíči

Používá se tzv. Kerchoffův princip. Bezpečnost závisí pouze na utajení klíče nikoliv utajení 
(de)šifrovací funkce. Funkce pak může být zveřejněna, což přináší další výhody (standardizace). 
Šifer založených na klíči máme 3 typy – symetrické, asymetrické a hybridní.

Kromě utajení zpráv řeší i jiné problémy např. autentizaci.

Obrázek 1:  (De)šifrovací proces

Několik základních pojmů:
• ℳ︀ … konečná množina všech zpráv
• 𝒞︀ … konečná množina všech kryptogramů
• 𝒦︀ … konečná množina všech klíčů
• 𝑒 : ℳ︀ × 𝒦︀ → 𝒞︀ … šifrovací funkce
• 𝑑 : 𝒞︀ × 𝒦︀ → ℳ︀ … dešifrovací funkce

Šifra podle Clauda Shannona Definice 1

Šifra založená na klíči je pětice ⟨ℳ︀, 𝒞︀, 𝒦︀, 𝑒, 𝑑⟩ taková, že pro libovolný šifrovací klíč 𝑘𝑒 ∈
𝒦︀ a jemu odpovídající dešifrovací klíč 𝑘𝑑 ∈ 𝒦︀ platí

𝑑(𝑒, (𝑥, 𝑘𝑒), 𝑘𝑑) = 𝑥

pro všechna 𝑥 ∈ ℳ︀. Krátce budeme mluvit o šifře.

Tato definice neříká nic o bezpečnosti. Klidně by 𝑒 a 𝑑 mohla být identita a definice by 
byla splněna.

Funkce také musí být injektivní. Pokud by nebyla, způsobilo by to problém, že bychom 
nebyli schopni zprávu jednoznačně rozšifrovat (ze 2 různých zpráv bychom totiž dostali stejný 
kryptogram).

Šifrovací a dešifrovací funkce obvykle zprávu zakódují do posloupnosti čísel, s kterou poté 
manipulují pomocí klasikcýh matematických operací (sčítání, násobení, …). Pro definování 
těchto operacích na konečných množinách se používá modulární aritmetika.

3.2.1  Symetrické šifry (private-key cryptography)

Klíč pro šifrování a dešifrování je stejný (nebo je mezi nimi jednoduchý vztah). Primárně to 
jsou všechny historické šifry. Alice a Bob mají stejný klíč, kterým umí oba šifrovat i dešifrovat. 
Např. klasické (posouvací, Vigenerova), RC2, DES, AES, Blowfish, …

V tomto případě mluvíme o tajném klíči (neplést se soukromým u asymetrické šifry).
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Obrázek 2:  Symetrické šifrování

Postup
1. Alice a Bob se domluví na klíči
2. Alice zprávu pomocí klíče zašifruje
3. Šifrovaná zpráva může být přes nezabezpečený kanál poslána Bobovi
4. Bob zprávu dešifruje pomocí stejného klíče

 Výhody: vysoká rychlost

 Nevýhody: nebezpečí odhalení klíče 3. stranou (náročnější distribuce), velký počet klíčů 
(složitý key management) rostoucí kvadraticky (𝑛

2 ).

Autentizace za pomocí symetrického šifrování

Částečně brání útoku MITM (man in the middle). Odesílá se jak zašifrovaná zpráva, tak 
otevřená a jejich porovnáním můžeme ověřit že nebyla po cestě změněna. Pořád ale může 
útočník menit pořadí více zpráv, různě prohazovat v párech atd.

3.2.2  Asymetrické šifry (public-key cryptography)

Vymyšleno v roce 1976 3 lidmi: Martin Hellman, Ralph Merkle a Whitfield Diffie. Klíče pro 
šifrování (veřejný klíč) a dešifrování (soukromý klíč) nejsou stejné. Soukromý klíč nesmí být 
z veřejného rozumné době odvoditelný (opačně to jde). Z logiky věci veřejný může být distri
buován a soukromý musí být držen v tajnosti. Např. RSA, šifrování založené na eliptických 
křivkách, šifrování založené na zavazadlovém problému.

Obrázek 3: Asymetrické šifrování

 Výhody: bezpečnější, není potřeba správa klíčů.

 Nevýhody: výrazně pomalejší (o několik řádů).

Postup
1. příjemce vytvoří soukromý a veřejný klíč
2. soukromý si uschová, veřejný zveřejní
3. odesílatel zprávu zašifruje pomocí veřejného klíče
4. odeslání šifrované zprávy nezabezpečeným kanálem
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5. příjemce dešifruje pomocí svého soukromého klíče

Obrázek 4:  Asymetrické šifrování

Vytváření veřejného a soukromého klíče

[TBA]

3.2.3  Hybridní šifry

Kombinuje symetrické a asymetrické šifrování a bere si to lepší z obou. Tím že tajný klíč je 
krátký, tak nízká rychlost asymetrické šifry není znát. Používá se třeba v protokolech TSL 
a SSL.

Obrázek 5:  Hybridní šifrování

Prvním praktickým použitím hybridního šifrování bylo Pretty good privacy (PGP) použí
vající šifry IDEA a RSA.

3.2.4  Protokoly SSL a TLS

Jedná se o kryptografické protokoly zajišťující bezpečnou komunikaci na internetu (dříve 
používáno v HTTPS).

Při zahájení komunikace zde probíhá handshake, ve kterém se používají digitální certifikáty 
(jméno serveru, veřejný klíč, certifikační autorita). Klient může ověřit platnost tohoto certi
fikátu. Klient podporuje různé šifrovací algoritmy a hashovací funkce, z kterých poté server 
vybírá.

3.3  Modulární aritmetika

Důležité pojmy:
• prvočísla
• rozklad na prvočísla
• Euklidův algoritmus
• největší společný dělitel (a jeho vlastnosti)
• nesoudělnost
• kongruence modulo 𝑛
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• množiny zbytkových tříd ℤ𝑛 = {[𝑎]𝑛 | 𝑎 ∈ ℤ}
• inverzní prvky
• číselná tělesa (grupa, monoid, …)
• eulerova funkce
• Bezoutova rovnost

4 základních vlastností největšího společného dělitele:

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎)
gcd(𝑎, 𝑏) = gcd(−𝑎, 𝑏)
gcd(𝑎, 0) = |𝑎|
gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑘 · 𝑏, 𝑏)

Čínská věta o zbytcích1 Theorem 2

Nechť jsou 𝑛1, 𝑛2, …, 𝑛𝑘 po dvou nesoudělná nenulová přirozená čísla, tzn. gcd(𝑛𝑖, 𝑛𝑗) = 1 
pro 𝑖 ≠ 𝑗. Dále nechť je 𝑎1, 𝑎2, …, 𝑎𝑘 ∈ ℕ. Pak systém konfigurací

𝑥 ≡ 𝑎1(mod 𝑛1)
𝑥 ≡ 𝑎2(mod 𝑛2)

⋮
𝑥 ≡ 𝑎𝑘(mod 𝑛𝑘)

je řešitelný. Jsou-li 𝑐 a 𝑐′ řešení tohoto systému, pak platí

𝑐 ≡ 𝑐′(mod 𝑛1 ⋅ 𝑛2 … 𝑛𝑘)

[Tady by se dala napsat řada dalších věcí, které jsou zmíněny především v prezentacích nebo je 

známe z jiných předmětů.]

4  Klasické šifry

Jedná se o symetrické šifry. Pro zjednodušení používáme anglickou abecedu s 26 písmeny (A, 
B, …, Z), která jsou kódovány pořadovým číslem – A → 0, B → 1, …, Z → 25. Počítáme tedy v 
ℤ26, ale obecně všechny šifry se dají zobecnit na abecedy s 𝑛 symboly (tedy ℤ𝑛).

Máme dva typy dělení šifer na:
1. monoabecední
2. polyabecední

a nebo
1. blokové šifry
2. proudové šifry

4.1  Monoabecední šifry

Prvky množin ℳ︀ a 𝒞︀ jsou jednotlivé symboly abecedy. Tedy jediný symbol abecedy je mapován 
šifrovací funkcí na jediný symbol. Například Caesarova šifra.

1Tato věta se používá při rychlém umocnění v RSA.
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4.1.1  Posouvací šifra

Písmeno je posunuto o určitý počet pozic, který je dán klíčem (v Caesarově šifře je 𝑘 = 3). 
Kryptoanalýzu a prolomení provádíme hrubou silou. Tím, že existuje pouze 26 klíčů, tak v 
průměru klíč odhalíme po 13 pokusech (26

2 ), tedy šifra není bezpečná.

Posouvací šifra Definice 3

Nechť ℳ︀ = 𝒞︀ = 𝒦︀ = ℤ26. Pro 𝑘 ∈ 𝒦︀ definujeme šifrovací funkci

𝑒(𝑥, 𝑘) = 𝑥 + 𝑘

a dešifrovací funkci

𝑑(𝑦, 𝑘) = 𝑦 − 𝑘.

4.1.2  Afinní šifra

Mapování se provádí pomocí funkce 𝑒(𝑥, 𝑘) = 𝑎𝑥 + 𝑏, kde 𝑘 = ⟨𝑎, 𝑏⟩. Funkce musí být injektivní. 
Z definice si všimneme, že jde o speciální případ posouvací šifry (𝑎 = 1, 𝑘 = 𝑏). Jestliže bereme 
⟨𝑎, 𝑏⟩ ∈ ℤ26 × ℤ26, pak existuje 312 různých klíčů (velmi málo), protože 𝑎 musí být nesoudělné 
s 26 (viz podmínka gcd) a 𝑏 vybíráme libovolně => 26 ⋅ 𝜑(26) = 26 ⋅ 12.

Afinní šifra Definice 4

Nechť ℳ︀ = 𝒞︀ = ℤ26, 𝒦︀ = {⟨𝑎, 𝑏⟩ ∈ ℤ26 × ℤ26 | gcd(𝑎, 26) = 1}. Pro 𝑘 = ⟨𝑎, 𝑏⟩ ∈ 𝒦︀ definu
jeme šifrovací funkci

𝑒(𝑥, 𝑘) = 𝑎𝑥 + 𝑏

a dešifrovací funkci

𝑑(𝑦, 𝑘) = 𝑎−1(𝑦 − 𝑏).

Injektivnost afinní šifry Poznámka 5

Funkce 𝑒(𝑥, 𝑘) = 𝑎𝑥 + 𝑏 je injektivní, jestliže gcd(𝑎, 26) = 1.

4.1.3  Substituční šifra

Písmeno abecedy je mapováno na jiné písmeno stejné abecedy podle dané permutace této 
abecedy. Připomenout si co je to permutace. Obě předešlé šifry jsou speciálním případem 
substituční. Je zhruba 4 ⋅ 1026 klíčů, což je sice hodně (nestačí brute-force útok), ale pořád není 
bezpečná (máme i jiné metody než hrubou sílu viz dále).

Substituční šifra Definice 6

Nechť ℳ︀ = 𝒞︀ = ℤ26, 𝒦︀ = {𝜋 | 𝜋 je permutace 26}. Pro 𝜋 ∈ 𝒦︀ definujeme šifrovací funkci

𝑒(𝑥, 𝜋) = 𝜋(𝑥)

a dešifrovací funkci

𝑑(𝑦, 𝜋) = 𝜋−1(𝑦).
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4.2  Polyabecední šifry

Prvky množin ℳ︀ a 𝒞︀ jsou posloupnosti symbolů abecedy určité délky. Tedy symbol abecedy 
je mapován na jeden z několika symbolů. Například Vigenèrova šifra. Jsou o něco silnější 
(bezpečnější).

4.2.1  Vigenèrova šifra

Polyabecední šifra. Existuje 26𝑚 různých klíčů délky 𝑚, ale pořád není bezpečná (opět kvůli 
jiným metodám kryptoanalýzy).

Vigenèrova šifra Definice 7

Nechť ℳ︀ = 𝒞︀ = 𝒦︀ = ℤ𝑚
26,  𝑚 ∈ ℕ. Pro klíč 𝑘 = ⟨𝑘1, …, 𝑘𝑚⟩ ∈ 𝒦︀ definujeme šifrovací funkci

𝑒(𝑥, 𝑘) = ⟨𝑥1 + 𝑘1, …, 𝑥𝑚 + 𝑘𝑚⟩

a dešifrovací funkci

𝑑(𝑦, 𝑘) = ⟨𝑦1 − 𝑘, …, 𝑦𝑚 − 𝑘𝑚⟩.

Pro všechna 𝑥 = ⟨𝑥1, …, 𝑥𝑚⟩ ∈ ℳ︀, 𝑦 = ⟨𝑦1, …, 𝑦𝑚⟩ ∈ 𝒞︀.

Proudové šifry

Pomocí klíče 𝑘 ∈ 𝒦︀ je generován klíčový proud (keyst­
ream) 𝑧 = 𝑧1𝑧2⋯𝑧𝑛. Takže pak pro každý znak se používá 
jiný klíč právě z onoho proudu. Generování klíčového 
proudu může být synchronní – generován nezávisle na 
šifrovaném i původním textu nebo asynchornní – využije 
se šifrovaný nebo původní text.

Blokové šifry

Všechny předchozí jsou blokové. 
Neboli všechny prvky z ℳ︀ jsou 
šifrovány pomocí jednoho klíče.

4.3  Proudové šifry

Všechny do teď zmíněné šifry byly blokové, což znamená že všechny prvky z otevřené zprávy 
jsou šifrovány pomocí jednoho klíče. Zatímco u proudových šifer je generován klíčový proud 

(keystream). Může být generován synchronně (nezávisle na šifrovaném i původním textu) nebo 
asyncrhonně (s využitím šifrovaného nebo původního textu).

Klíčový proud Poznámka 8

Klíčový proud je něco jako potenciálně nekonečný řetězec.

Několik základních pojmů:
• ℳ︀ … množina zpráv
• 𝒞︀ … množina kryptogramů
• 𝒦︀ … množina klíčů
• ℒ︀ … abeceda klíčového proudu
• 𝑔 : 𝒦︀ → ℒ︀∗ … generátor klíčového proudu
• 𝑒 : ℳ︀ × ℒ︀ → 𝒞︀ … šifrovací funkce
• 𝑑 : 𝒞︀ × ℒ︀ → ℳ︀ … dešifrovací funkce
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𝑔(𝑘) = 𝑘 ⋅ 𝑘 ⋅ 𝑘…

Proudová šifra Definice 9

Proudová šifra je sedmice ⟨ℳ︀, 𝒞︀, 𝒦︀, ℒ︀, 𝑔, 𝑒, 𝑑⟩ taková, že pro libovolné 𝑧 ∈ ℒ︀

𝑑(𝑒(𝑥, 𝑧), 𝑧) = 𝑥

pro všechna 𝑥 ∈ ℳ︀.

4.3.1  Linear feedback shift

Metoda generování klíčového proudu (dříve často ve vojenských). Pracuje nad abecedou

ℤ2 : 𝒦︀ = ℤ2𝑚
2 , 𝑚 ∈ ℕ, ℒ︀ = ℤ2.

Klíč je složen 2𝑚 hodnot (𝑘 = ⟨𝑘1, …, 𝑘𝑚, 𝑐0, …, 𝑐𝑚−1⟩). Pro daný klíč 𝑘 rekurzivně vygenerujeme 
klíčový proud 𝑧 = 𝑧1𝑧2⋯

𝑧𝑖 = 𝑘𝑖 pro 1 ≤ 𝑖 ≤ 𝑚

𝑧𝑖+𝑚 = ∑
𝑚−1

𝑗=0
𝑐𝑗 ⋅ 𝑧𝑖+𝑗 pro  𝑖 ≥ 1

Pro komponenty klíč nesmí platit, že buď se sobě nesmí rovnat 𝑘 a taky nemusí být 0 nebo 𝑐 
(stejně i s nulou).

Hardware implementace pomocí linear feedback shift registru (LFSR) a následujících 6 krocích
1. inicializace bitů registru
2. bit 𝑏1 se použije jako další hodnota klíčového proudu
3. počítá se lineární kombinace 𝐵 = 𝑐0𝑏1 + 𝑐1𝑏2 + … + 𝑐𝑚−1𝑏𝑚
4. bity 𝑏2, …, 𝑏𝑚 se posunou o 1 pozici doleva
5. poslednímu bitu 𝑏𝑚 se přiřadí vypočítaná hodnota 𝐵
6. pokračuj na kroku 2

Výpočet linear feedback shift Příklad 10

Uvažujme 𝑚 = 4 a 𝑘 = ⟨1, 0, 0, 0, 1, 1, 0, 0⟩. Vypočítejte několik prvních hodnot klíčového 
proudu (to je to 𝒛).

Kdy se hodnoty začnou opakovat? Po 15 číslech. Podle Chat GPT je 2𝑚 − 1 maximální 

délka.

Jak vypadá LSFR?

4.3.2  Asynchornní proudové šifry

Každý prvek (kromě prvního) klíčového proudu je vypočítán za pomocí prvku předchozího. 
Výhodou je, že se hodnoty nebudou opakovat.
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Asynchornní proudové šifry Definice 11

Nechť ℳ︀ = 𝒞︀ = 𝒦︀ = ℒ︀ = ℤ26. Autokey šifry je proudová šifra taková, že
• pro klíč 𝑘 ∈ 𝒦︀ a zprávu 𝑥1𝑥2⋯ platí 𝑔(𝑘) = 𝑧1𝑧2⋯, kde 𝑧1 = 𝑘 a 𝑧𝑖 = 𝑥𝑖−1 pro 𝑖 ≥ 2,
• pro libovolnou hodnotu 𝑧 ∈ ℒ︀ definujeme šifrovací funkci

𝑒(𝑥, 𝑧) = 𝑥 + 𝑧

a dešifrovací funkci

𝑑(𝑦, 𝑧) = 𝑦 − 𝑧

pro všechna 𝑥 ∈ ℳ︀, 𝑦 ∈ 𝒞︀.

5  Kryptoanalýza klasických šifer

Pokud víme jak šifra funguje je její prolomení výrazně snazší, tzv. Kerckhoffův princip. Logicky 
tím neuvažujeme prolomení omezené šifry. Máme několik typů útoků, v závislosti na tom jaké 
informace jsou k dispozici. Ve všech případech je snahou získat klíč.

1. Ciphertext only attack – známe zašifrovanou zprávy
2. Known plaintext attack – známe původní i jí odpovídající zašifrovanou zpráv
3. Chosen plaintext attack – dočasný přístup k šifrovacímu kryptografickému modulu → 

můžeme vybrat libovolnou zprávu a tu zašifrovat
4. Chosen ciphertext attack – dočasný přístup k dešifrovacímu kryptografickému modulu 

→ můžeme vybrat libovolný kryptogram a ten rozšifrovat

Předpoklad. Často je analýza založena na statistických vlastnostech daného jazyka. Uvažu
jeme anglický jazyk (s 26 znaky) a neuvažujeme mezery (je to snazší).

Statistické vlastnosti angličtiny Poznámka 12

Beker a Pipe pro anglický jazyk zjistili následující vlastnosti:
• písmeno E se vyskytuje s pravděpodobností asi 0,12
• písmena T, A, O, I, N, S, H, R mezi 0,06 a 0,08
• písmena D, L asi 0,04
• C, U, M, W, F, G, Y, P, B mezi 0,015 a 0,028
• V, K, J, X, Q, Z asi 0,01
• nejpoužívanější digramy: TH, HE, IN, ER, AN, RE, ED, ON, ES, TS, EN, AT, TO, 

NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF,…
• nejpoužívanější trigramy: THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, 

ETH, FOR, DTH, …

Postup. Najdeme v kryptogramu znak s největší četností, ten je pravděpodobně zašifrovaným 
písmenem E. Obdobně pokračujeme pro další skupiny písmen, případně i digramy a trigramy.

5.1  Kryptoanalýza Vigenèrovy šifry

Nejdříve musíme zjistit délku 𝑚 klíče. K tomu máme 2 testy – Kasiského test a Friedmanův test.
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5.1.1  Kasiského test

Pochází někdy z období roku 1840-1860. Říká, že stejné segmenty původní zprávy budou 
zašifrovány do identického kryptogramu, pokud je jejich vzdálenost 𝛿 celočíselným násobkem 
délky klíčového slova 𝑚, tzn. pokud platí 𝑚 | 𝛿

Postup. Hledáme identické segmenty o délce alespoň 3 v kryptogramu a ukládáme jejich 
vzájemnou vzdálenost 𝛿𝑖. S velkou pravděpodobností se totiž jedná o zašifrované identické 
segmenty původní zprávy. Pokud tomu tak je, pak platí 𝑚 | 𝛿𝑖 pro všechna 𝑖 z čehož plyne, že 
𝑚 dělí největšího společného dělitele čísel 𝛿𝑖 (označíme gcd(𝛿𝑖)).

Otázkou je jak získáme 𝑚? Viz příklad níže.

Kasiského test Příklad 13

• Otevřený text: the primary weakness of the Vigenere cipher is evidently the repeating 
nature of the key

• Klíč: abcd
• Kryptogram (mezery jsou na svých místech): TIG SRJODRZ YHALPHST QI TIG 

YIHGQESG FIQJHR JU HVJFHNUNB TIG UEQGDTJPJ NBVXRF QI TIG 
NEZ2

• Vzájemné vzdálenosti jsou 𝛿1 = 20, 𝛿2 = 28, 𝛿3 = 20 a 𝑚 = gcd(20, 28) = 4

5.1.2  Friedmanův test (Kappa test)

Založen na tzv. indexu koincidence (označovaný jako 𝓀︀).

Friedmanův test Definice 14

Uvažujeme řetězec 𝘹  nad nějakou abecedou. Index koincidence 𝐼(𝘹) řetězce 𝘹  je pravděpo
dobnost, že dva náhodně vybrané prvky tohoto řetězce jsou identické.

Předpokládejme, že se v řetezci 𝘹  vyskytuje znak A 𝑛1krát, znak B 𝑛2krát, …, znak Z 𝑛26
krát. Kolika způsoby můžeme vybrat identickou dvojici 𝑖tého znaku? Je to 𝑛𝑖⋅(𝑛𝑖−1)

2  krát. Platí 
následující rovnost, kde 𝑛 je délka řetězce 𝘹 .

𝐼(𝘹) =
∑26

𝑖=1 𝑛𝑖 ⋅ (𝑛𝑖 − 1)
𝑛 ⋅ (𝑛 − 1)

Můžeme provést výpočet indexu koincidence libovolného anglicky psaného textu. Známe přib
ližný výskyt všech 26 znaků z abecedy.

𝘈, 𝑝1 = 0, 082
𝘉, 𝑝2 = 0, 015
𝘊, 𝑝3 = 0, 028

⋮
𝘡 , 𝑝26 = 00, 1

Pak platí tento vzorec

2Zvýrazněn je stejný kryptogram.
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𝐼(eng) ≈ 𝑝2
1 + 𝑝2

2 + … + 𝑝2
26 = ∑

26

𝑖=1
𝑝2

𝑖 = 0.065

který říká že v anglickém textu jsou 2 náhodně zvolené znaky s pravděpodobností 6,5 % stejné. 
U němčiny je to cca 7,6 % a u náhodně generovaného textu (z anglické abecedy) je to 3,8 % 
(asi polovina angličtiny).

5.1.3  Index koincidence

Theorem 15

Index koincidence je tím menší, čím je text nepravidelnější (rozložení četností znaků 
rovnoměrnější).

Vliv šifrování a na index koincidence je rozdílný u polyabecední a monoabecední šifry. 
Tím že monoabecední šifry jen permutují znaky, tak index koincidence zůstává stejný jak pro 
plaintext tak i kryptogram. U polyabecední šifry záleží na klíči (jeho délce). Čím je klíč delší, 
tím se koincidence snižuje. Index koincidence tedy umí určit zda-li se jedná o polyabecední nebo 
monoabecední šifru.

5.2  Kryptoanalýza LSFR proudové šifry

Předpokládáme known plaintext attack – známe původní zprávu 𝑥1…𝑥𝑛, zašifrovanou zprávu 
𝑦1…𝑦𝑛 i počet bitů 𝑚. Prvních 𝑛 znaků klíčového proudo spočítáme jako

𝑧𝑖 = (𝑦𝑖 − 𝑥𝑖) mod 2 = (𝑥𝑖 + 𝑦𝑖) mod 2

a pro 1 ≤ 𝑖 ≤ 𝑚 platí

𝑧𝑖+𝑚 = ∑
𝑚−1

𝑗=0
𝑐𝑗 ⋅ 𝑧𝑖+𝑗 mod 2

pro výpočet celého proudového klíče potřebujeme koeficienty 𝑐0, …, 𝑐𝑚−1. Z toho vyplývá, že 
počítáme soustavou 𝑚 rovnic o 𝑚 neznámých

𝑧𝑚+1 = 𝑐0𝑧1 + 𝑐1𝑧2 + … + 𝑐𝑚−1𝑧𝑚

𝑧𝑚+2 = 𝑐0𝑧2 + 𝑐1𝑧3 + … + 𝑐𝑚−1𝑧𝑚+1

⋮
𝑧2𝑚 = 𝑐0𝑧𝑚 + 𝑐1𝑧𝑚+1 + … + 𝑐𝑚−1𝑧2𝑚−1

5.3  Pravděpodobnost

Jako opakování je zmíněno v prezentacích, případně předměty KMI/DISK1 a KMI/DISK2. 
Tady vypíšu jen nějaké základní pojmy co by měl člověk chápat pro další kapitoly.

• elementární jev
• pravděpodobnostní prostor
• jev
• množina jevů
• vzájemně neslučitelné jevy
• 𝜎-algebra
• pravděpodobnostní míra
• distribuce pravděpodobnosti
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• podmíněná pravděpodobnost
• apriorní a aposteriorní pravděpodobnost
• náhodná proměnná

Podmíněná pravděpodobnost Definice 16

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∪ 𝐵)
𝑃(𝐵)

5.3.1  Bayesova věta

Pozor na zaměnění 𝑃(𝐴|𝐵) a 𝑃(𝐵|𝐴), protože obecně jsou tyto pravděpodobnosti různé. Vztah 
mezi nimi udává právě Bayesova věta, kterou budeme dále využívat u perfektní bezpečnosti.

Bayesova věta Definice 17

𝑃(𝐴|𝐵) = 𝑃(𝐴) ⋅ 𝑃 (𝐵|𝐴)
𝑃(𝐵)

Náhodná proměnná Definice 18

Náhodná proměnná 𝑿 je dvojice ⟨𝒳︀, 𝑝𝒳︀⟩, kde 𝒳︀ je konečný prostor elementárních jevů 
a 𝑝𝒳︀ je distribuce pravděpodobnosti na 𝒳︀. Pravděpodobnost, že náhodná proměnná 𝑿 
nabývá hodnoty 𝑥 ∈ 𝒳︀ se značí 𝑝(𝑿 = 𝑥).

[Zdě opět možnost dostudovat řadu dalších věcí, které jsou buď v prezentacích nebo jiných 

předmětech.]

6  Perfektní bezpečnost

Máme 2 typy bezpečnosti kryptosystému – teoretická bezpečnost (dnes také perfektní nebo 
informačně-teoretická) a praktická bezpečnost (dnes výpočetní bezpečnost).

6.1  Výpočetní bezpečnost (computational security)

Kryptosystém považujeme za takto bezpečný, pokud nejlepší existující algoritmus vyžaduje pro 
jeho prolomení 𝑛 kroků (kde 𝑛 je dostatečně vysoké číslo). Ale už z tohoto je jasné, že je těžké 
to prokázat, proto se uvažuje vždy k nějakému konkrétnímu typu útoku.

6.2  Dokazatelná bezpečnost (provable security)

Tzv. bezpečnost vzhledem k redukci – jestliže je možné kryptosystém prolomit, pak je možné 
vyřešit nějaký známý obtížný problém. Např. RSA je dokazatelně bezpečný jestliže dané číslo 
(modul) nelze faktorizovat v polynomickém čase.

6.3  Perfektní bezpečnost (unconditional security)

Označíme tak kryptosystém, jestliže útočník není schopen získat z kryptogramu žádnou infor
maci o plaintextu ani s využitím neomezených zdrojů. K přesné formulaci podmínky využijeme 
počtu pravděpodobnosti. Překvapivě takový systém opravdu existuje.
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Z pozorování plyne, že jestliže 𝑝(𝑴 = 𝑚 | 𝑪 = 𝑐) = 𝑝(𝑴 = 𝑚), pak pravděpodobnost, že byla 
šifrována zpráva 𝑚 za podmínky, že byl získán kryptogram 𝑐, je stejná jako pravděpodobnost 
výběru zprávy 𝑚 bez znalosti kryptogramu 𝑐.

Kdy je kryptosystém perfektně bezpečný? Definice 19

Jestliže platí

𝑝(𝑴 = 𝑚 | 𝑪 = 𝑐) = 𝑝(𝑴 = 𝑚)

pro všechna 𝑚 ∈ ℳ︀ a 𝑐 ∈ 𝒞︀.

𝑴  a 𝑪 musí být nezávislé náhodné proměnné.

Vlastnosti perfektní bezpečnosti jsou:
1. 𝑝(𝑪 = 𝑐 | 𝑴 = 𝑚) = 𝑝(𝑪 = 𝑐)
2. každá zpráva může být zašifrována na libovolný kryptogram
3. |𝒦︀| ≥ |𝒞︀| ≥ |ℳ︀|

Poznámka 20

Pro dosažení perfektní bezpečnosti překvapivě stačí vhodně použít posouvací šifru.

Perfektně bezpečná posouvací šifra Definice 21

Předpokládejme posouvací šifru nad ℤ26. Každá zpráva 𝑚 ∈ 𝑀  je šifrována pomocí 
náhodně vybraného klíče 𝑘 ∈ 𝒦︀ tak, že 𝑝(𝑲 = 𝑘) = 1. Taková posouvací šifra je perfektně 
bezpečná.

[Na slajdu 128 důkaz.] □

Shannonův teorém Theorem 22

Nechť |𝒦︀| = |𝒞︀| = |ℳ︀|. Kryptosystém je perfektně bezpečný pokud jsou splněny následu
jící podmínky:

1. každá zpráva 𝑚 ∈ ℳ︀ je šifrována pomocí náhodně vybraného klíče 𝑘 ∈ 𝒦︀ tak, že 
𝑝(𝑲 = 𝑘) = 1

|𝒦︀|
2. pro každé 𝑚 ∈ ℳ︀ a 𝑐 ∈ 𝒞︀ existuje právě jeden klíč 𝑘0 takový, že 𝑒(𝑚, 𝑘0) = 𝑐.

6.3.1  One-time Pad (Vernamova šifra)

Autor je Gilbert Standford Vernam (také autor proudové šifry). Původně pro šifrování telegraf
ních zpráv. Využívá aritmetiku modulo 2. Klíč je stejně dlouhý jako plaintext a je použit pouze 
jednou (z toho název one-time). Nevýhodou je množství klíčů, které se musí používat a jejich 
následná distribuce.
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One-time Pad Definice 23

Nechť |ℳ︀| = |𝒞︀| = |𝒦︀| = ℤ𝑚
2 , 𝑚 ∈ ℕ. Pro klíč 𝒌 = ⟨𝑘1, …, 𝑘𝑚⟩ ∈ 𝒦︀ definujeme šifrovací 

funkci

𝑒(𝒙, 𝒌) = ⟨𝑥1 + 𝑘1, …, 𝑥𝑚 + 𝑘𝑚⟩,

a dešifrovací funkci

𝑑(𝒚, 𝒌) = ⟨𝑦1 + 𝑘1, …, 𝑦𝑚 + 𝑘𝑚⟩,

pro všechna 𝒙 = ⟨𝑥1, …, 𝑥𝑚⟩ ∈ ℳ︀, 𝒚 = ⟨𝑦1, …, 𝑦𝑚⟩ ∈ 𝒞︀.

7  Falešné klíče

Předpoklad: Snažíme se najít klíč. Předpokládáme, že: máme neomezené zdroje, používáme 
angličtinu a uvažujeme útok ciphertext-only attack.

Jak poznáme, že odhalený klíč je správný? Pokud dešifrování za pomocí nalezeného klíče dává 
smysluplný text. Na druhou stranu více klíčů může jediný kryptogram rozšifrovat na smysluplný 
text. Toto se nedá nijak odhalit a pravděpodobnost na správný klíče je dána jejich nalezeným 
počtem.

Falešný klíče Definice 24

Falešný klíče (spurious key) je nesprávný klíč, který dešifruje kryptogram na smyslu
plný text.

Snažíme se určit jak dlouhý kryptogram potřebujeme, aby byl počet falešných klíčů nulový. 
Nejkratší takovou délku označíme jako vzdálenost jednoznačnosti (unicity distance). 
Klíčová ekvivokace (průměrná míra nejistoty, že kryptogram byl zašifrován určitým klíčem) a 
redundance jazyka (nadbytečnost v jazyce) jsou dva pojmy, které k tomu potřebujeme a souvisí 
s přirozeným jazykem. Oba pojmy vychází z entropie3

Theorem 25

Dvě náhodné proměnné 𝑿 a 𝒀  jsou nezávislé jestliže platí 𝐸(𝑋|𝑌 ) = 𝐸(𝑋).

7.1  Entropie

Zařízení generující posloupnost symbolů, kde výstup v jednom okamžiku neovlivňuje výstup v 
dalším okamžiku.

Míra překvapení Definice 26

Jak moc jsme překvapeni že se objeví 𝑖-tý symbol. Zapsáno matematicky:

− log𝑛(𝑃𝑖)

kde 𝑃𝑖 je pravděpodobnost objevení se 𝑖-tého symbolu.

3tzv. míra překvapení, že se objeví 𝑖-tý symbol − log𝑛(𝑃𝑖)
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Základ logaritmu určuje jednotku. Obvykle 𝑛 = 2 a nazývá se shannon nebo bit. Používá se 
protože je klesající a má asymptotu 𝑥 = 0.

Příklad 27

Jestliže produkujeme tři symboly A, B, C se stejnou četností, je pravděpodobnost výskytu 
každého z nich 1

3 . Tedy míra překvapení se spočítá jako − log2(1
3) =̇ 1, 585.

Pokud bychom měli jen 1 symbol, tak by pravděpodobnost byla 1 a platilo by, že 
− log2(1) =̇ 0. Čili vůbec nás nepřekvapí, že se objeví právě onen jediný symbol.

Entropie diskrétní náhodné proměnné Definice 28

Je definována jako průměrná míra překvapení neboli: [TBA]

Platí následující vztahy:
• 𝐸(𝑋 | 𝑌 ) = 𝐸(𝑋, 𝑌 ) − 𝐸(𝑌 )
• X a Y jsou závislé proměnné právě tehdy když 𝐸(𝑋 | 𝑌 ) = 𝐸(𝑌 )

7.1.1  Entropie kryptosystému

Uvažujeme náhodné proměnné:
• 𝑀 = (ℳ︀, 𝑝ℳ︀)
• 𝐾 = (𝒦︀, 𝑝𝒦︀)
• 𝐶 = (𝒞︀, 𝑝𝒞︀)

a zajímá nás entropie těchto tří proměnných 𝐸(𝑀), 𝐸(𝐶) a 𝐸(𝐾).

Na základě těchto věcí můžeme entropii aplikovat na konkrétní kryptosystém a spočítat přesné 
číselné hodnoty.

Příklad entropie kryptosystému Příklad 29

7.1.2  Klíčová ekvivokace

Podmíněná entropie 𝐸(𝐾|𝐶) se nazývá klíčová ekvivokace. Dá se přeložit jako nejistota nebo 
neurčitost (udává totiž průměrnou nejistotu klíče když známe nějaký kryptogram).

Platí pro ni tento vzorec: 𝐸(𝐾|𝐶) = 𝐸(𝑀|𝐶 + (𝐸(𝑀))

7.1.3  Entropie přirozeného jazyka

Pokud máme věty v přirozeném jazyce, tak se jedná v podstatě o věty generované zdrojem s 
nenulovou pamětí (slova/písmena mají mezi sebou souvislost podle předchozích). Z tohoto se dá 
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vyčíst že zdroje produkují znaky s nějakou pravděpodobností. Entropii 𝐸𝐿 přirozeného jazyka 
𝐿 můžeme shora omezit:

𝐸𝐿 ≈ 𝐸(𝑀) = − ∑
𝑚∈𝑀

𝑃(𝑀 = 𝑚) ⋅ log 𝑃(𝑀 = 𝑚)

Existuje i korelace mezi jednotlivými písmeny textu

𝐸𝑙 ≈
𝐸(𝑀2)

2

Pro angličtinu platí 𝐸(𝑀) =̇ 4, 19 a 𝐸(𝑀2)
2 =̇ 3.9.

Pokud bychom brali 𝑛-gramy textu mohli bychom číslo zpřesňovat

𝐸𝐿 = lim
𝑛→∞

𝐸(𝑀𝑛)
𝑛

Přirozený jazyk má i poměrně vysokou redundanci (angličtina cca 75 %). To neznamená, že 
bychom 75 % znaků mohli vypustit, ale můžeme zkonstruovat Huffmanův kód s kompresním 
poměrem 4:1.

7.1.4  Počet falešných klíčů

Falešný klíč je klíč, který transformuje zašifrovaný text na smysluplnou zprávu, ale nejedná se 
o zprávu, kterou odesílatel opravdu odeslal.

Theorem 30

Předpokládejme kryptosystém, pro který platí |𝐶| = |𝑀| a každý klíč je vybírán se stejnou 
pravděpodobností. Pak pro kryptogram délky n (kde 𝑛 je dostatečně velké) platí:

𝑠𝑛 ≥ |𝐾|
|𝑀|𝑛·𝑅𝐿

− 1.

kde 𝑠𝑛 je počet falešných klíčů a 𝑅𝐿 je jejich redundance.

7.1.5  Vzdálenost jednoznačnosti kryptosystému

Zvyšováním délky kryptogramu získává útočník více informací o otevřené zprávě. Při určité 
délce 𝑛0 jich má dostatek k jednoznačnému určení pravého klíče. 𝑛0 nazveme vzdálenost 
jednoznačnosti. Platí tento vzorec

𝑛0 ≈ log2|𝐾|
𝑅𝐿 ⋅ log2|𝑀|

Pro anglický jazyk a substituční šifru by byl výsledek 25. Jinak řečeno útočníkovi stačí zašif
rovaný text o délce 25 znaků, aby byl schopen jednoznačně určit klíč k celé zprávě.

Čím větší 𝑛0 je, tím lepší. Zvětšení se dá provést zmenšením 𝑅𝐿, což můžeme udělat pomocí 
komprese otevřeného textu (vynechání 𝘶 po 𝘲 nebo vynechání některých samohlásek).

7.1.6  Ekvivokace zprávy

Dá se tak označit vzorec 𝐸(𝑀|𝐶).

Nezajímá nás celkový absolutní počet falešných klíčů, ale jejich průměrný počet.
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8  Současné symetrické šifry

DES a AES jsou dvě soudobé symetrické šifry. Jsou to tzv. iterační blokové šifry (opakuje se 
v ní použití nějaká funkce v rámci mnoha iterací). Pro zvýšení bezpečnosti kryptosystému se 
používají dvě dále vysvětlené operace – konfúze a difúze.

Konfúze je operace snažící se skrýt vztah mezi kryptogramem a použitým klíčem (např. v DES 
a AES pomocí substituce).

Difúze je myšlenka, že znak plaintextu by měl ovlivnit co nejvíce znaků kryptogramu (např. 
dnes změna 1 bitu plaintextu ovlivní asi 1

2  bitů kryptogramu). V DES se jedná o S-boxy kde 1 
bit vstupuje do více boxů.

Klasické šifry využívají pouze konfúzi. Moderní šifry používají obě operace zřetězeně.

8.1  Data Enycryption Standard (DES)

Je založena na Feistelově šifře. V ní je šifrování prováděno iterativně v tzv. rundách. V tomto 
případě nemusí být šifrovací funkce invertibilní kvůli poskládání vzorce šifrování (XOR).

Invertibilita šifrovací funkce Poznámka 31

Nutné myslet na to, že šifrovací funkce by měla být invertibilní. Abychom mohli provádět 
i dešfirování.

8.1.1  Feistelova šifra

Bloková šifra. Blok 𝑚 ∈ 𝑀  je rozdělen na 2 poloviny 𝐿0 a 𝑅0. Šifrování prováděno v iteracích 
(rundách). Čím více rund tím bezpečnější. Výpočet 𝑖-té rundy

𝐿𝑖 = 𝑅𝑖−1

𝑅𝑖 = 𝐿𝑖−1 ⊕ 𝑓(𝑘𝑖, 𝑅𝑖−1)

Po provedení rund se šifrovaný blok získá složením 𝐿𝑟 a 𝑅𝑟.

Rundovní funkce nemusí být invertibilní4. Šifrování i dešifrování má stejnou podobu. Z těchto 
faktů plynou 2 výhody – je možné použít libovolnou rundovní funkci a implementace šifrovací 
a dešifrovací funkce je stejná (jen se rundovní klíče používají v opačném pořadí).

Jde o blokovou, bitově orientovanou šifru (pracuje nad ℤ𝑚
2 , kde 𝑚 je délka bloku). Tím, že je 

založena na Feistelově šifře tak:
• počet rund = 16
• počet rundovních klíčů = 16
• délka bloku = 64 bitů
• délka klíče = 56 (64) bitů (každý 7 bit se doplňuje 1 paritním bitem)
• délka rundovních klíčů 𝑘0, …, 𝑘15 = 48 bitů.

4Invertibilní funkce je taková funkce ke které existuje funkce inverzní.
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Před první a poslední rundou se provádí permutace (ty nemají vliv na bezpečnost, byly přidány 
pouze pro lepší HW v té době).

Obrázek 6: Blokové schéma DES.

DES konkrétním způsobem definuje rundovní funkci 𝐹 , což je její největší přínos (zbytek stejný 
jako Feistelova šfira).

Postup
1. inicializace: počáteční permutace
2. rozdělení na 2 bloky: 6č bitů rozděleno na poloviny 𝐿𝑖−1 a 𝑅𝑖−1
3. expanzní permutace: 32 bitů se permutuje a expanduje na délku rundovního klíče (48 

bitů)
4. XOR s rundovním klíčem: jediné kde se používá rundovní klíč
5. substituce pomocí S-boxů: 6 bitová hodnota vstoupí do S-boxu (ty jsou nelineární) a 4 

bity vystoupí (nibble); 1. a 6. bit adresují řádky, 2. - 5. adresují sloupce; výsledkem všech 
je 8 ⋅ 4 = 32 bitů

6. permutace pomocí P-boxů: permutace 8 nibblů
7. spojení: spojí se 32 bitové bloky 𝐿𝑖 = 𝑅𝑖−1 a 𝑅𝑖 = 𝐿𝑖−1 ⊕ 𝑓(𝑘𝑖, 𝑅𝑖−1)
8. konečná permutace

Rundovní funkce se aplikuje v krocích 3. až 6 (viz obrázek).

Obrázek 7: Mapování bitů v DES šifře (3. až 6. krok v postupu).
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8.1.2  Tvorba rundovních klíčů

Mají délku 64 bitů, po odebrání paritních bitů 
(8., 16., 24., … bit) se získá 5ž bitový klíče 𝑘. 
Ten se pak dále dělí na 2 poloviny 𝐶0 a 𝐷0. Pro 
každou rundu platí

𝐶𝑖 = 𝑅𝐿𝑖(𝐶𝑖−1)

𝐷𝑖 = 𝑅𝐿𝑖(𝐷𝑖−1)

Obrázek 8: Tvorba rundovních klíčů

Délka klíče 56 bitů se rychle stala nedostatečnou. Bylo nutné vylepšení. Dvě varianty – 3DES 
(použití tří šifer DES DES → DES−1 → DES) nebo two key 3DES (navíc se použijí 2 klíče).

8.2  Advanced Encryption Standard (AES)

Výrazně zvětšená délka klíče a je také voli
telná (128, 192, 256 bitů) a podle ní se mění 
počet iterací (rund; 10, 12 nebo 14). Není 
bitově orientovaná, ale bajtově orientovaná. 
Používá se polynomiální aritmetika (kvůli to
mu že to jsou bajty) nad prvočíselnými tělesy. 
Standard AES vznikl ze šifry Rijndael od bel
gickcýh kryptologů. Označení podle použité 
délky klíče. Celým procesem šifrování prochá
zí stavová matice 𝑆 a matice rundovního klíče 
𝐾 typu 4 × 4.

Konfúze pomocí operace SubBytes a difúze 
pomocí ShiftRows a MixColumns (operace 
dělají přesně to co mají v názvu).

Dnešní využití je široké, např. WPA3, VPN, 
čipy v platebních kartách, datová úložiště, 
Signal, BitLocker, …

Pokud AES potřebuje hledat inverzní prvky 
z polynomiální aritmetiky kouká se do tzv. 
lookup table, kde jsou vypočítané a stačí je 
načíst.

Obrázek 9: Schéma šifry AES.
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Rundovní funkce se skládá ze 4 operací:

1. SubBytes – jasně definovaná operace, 
nelineární, realizuje konfúzi, provádí se 
ve 2 krocích (počítání inverze s 𝗆𝗈𝖽 a 
afinní transformace)

2. ShiftRows – realizuje difúzi, je inverti
bilní, rotace řádků (𝑖-tý řádek se rotuje 
o (𝑖 − 1) pozic doleva)

3. MicColumns – realizuje difúzi, je in
vertibilní, zajišťuje vzájemnou interakci 
řádků během každé rundy

4. AddRound Key – 𝖷𝖮𝖱 stavové matice 
rundovního klíče (po bajtech)

Obrázek 10: Operace rundovní funkce u AES.

Poznámka 32

Polynomiální aritmetika umožňí rychlé, reverzibilní a bezepčné operace. Celé je to „mate
maticky průhledné“.

1 // šifrování Typst

2 AddRoundKey(S, K_0)

3 for i = 1, 2, ..., 9 do

4   SubBytes(S)

5   ShiftRows(S)

6   MixColumns(S)

7   AddRoundKey(S, K_i)

8 end for

9 SubBytes(S)

10 ShiftRows(S)

11 AddRoundKey(S, K_10)

1 // dešifrování Typst

2 AddRoundKey(S, K_10)

3 InversibleShiftRows(S)

4 InversibleSubBytes(S)

5 for i = 9, 8, ..., 1 do

6   AddRoundKey(S, K_i)

7   InversbileMixColumns(S)

8   InversibleShiftRows(S)

23



9   InversibleSubBytes(S)

10 end for

11 AddRoundKey(S, K_0)

8.2.1  Šifra Rijndael

Je to iterační a bloková šifra (převzato z DES pro posílení konfúze i difúze). Používá substituční 
bloky. Je bajtově orientovaná. Jako ireducibilní polynom5 je použit 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 a 
posloupnost bitů 100011011 (číslo v bitu udává zda se 𝑥 na danou mocninu v polynomu nachází 
či nikoliv).

8.3  Polynomiální aritmetika

• Okruh jako algebraická struktura
• Pole jako algebraická struktura

[Opět část rozšiřitelná z jiných předmětů.]

9  Asymetrické šifrování

Na začátek zopakování věcí jak jsou rozebrané na začátku obecně o šifrování. U symetrického 
šifrování jsou 2 problémy – distribuce klíče a příliš velké množství klíčů. Problém můžeme vyřešit 
bezpečnou výměnou klíče ⇒ koncepčně dostaneme jiný systém šiforvání. V tomto příapdě 
nejsou klíče pro šifrování a dešifrování stejné:

• šifrovací klíč … veřejný klíč
• dešfirovací klíče … soukromý klíč (držen v tajnosti)

Příklady: šifrování založené na diskrétním logaritmu, zavazadlovém problému nebo eliptických 
křivkách, RSA, …

Postup
1. Příjemce vytvoří soukromý i veřejný klíč
2. Soukromý klíče uschová a veřejný zveřejní
3. Odesílatel zašifruje zprávu pomocí veřejného klíče
4. Zpráva je poslána
5. Příjemce ji rozšifruje pomopcí soukromého klíče

Obrázek 11: Asymetrické šifrování

9.1  Bezpečná výměna klíče

Máme několik několik předpokladů. Alice vlastní zámek A, který umí zamknout a odemknout 
pouze ona. Bob vlastní zámek B, který umí zamknout a odemknout pouze on.

5To znamená, že nejde rozložit na součin jednodušších polynomů.
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9.1.1  Jednoduché řešení

Jako první nás napadné jednoduché řešení popsané v následujícím postupu.
1. Alice uzamkne zprávu zámkem A
2. Takto zamčenou zprávu pošle Bobovi
3. Bob tuto zprávu uzamkne zámkem B
4. Tuto (drvkarát zamčenou) zpráv pošle zpět Alici
5. Alice odemkne zámek A
6. Zprávu, která je zamčená nyní pouze zámkem B pošle Bobovi
7. Bob odemkne zámkem B a dostane původní zprávu

Tento postup má ale jeden háček, neboť funguje díky vztahu

𝑒(⋅, 𝑘𝘈) ⚬ 𝑒(⋅, 𝑘𝘉) ⚬ 𝑑(⋅, 𝑘𝘈) ⚬ 𝑑(⋅, 𝑘𝘉) = id

který se nazývá komutativita, ten ale neplatí obecně. Proto musíme najít lepší a funkčí řešení.

9.1.2  Diffie-Hellmanova výměna klíče

Myšlenka tohot postupu je založená na míchání barev (viz obrázek). Tím záasdním krokem je 
mícháni společné a tajné barvy. Pozor ale tento proces je pouze jednosměrný.

Obrázek 12: Myšlenka výměny klíče podle Diffieho a Hellmana.

Převedeno do matematiky hledáme funkci 𝑓 , která bude taky jednosměrná. Čili vyčíslení funkce 
bude výpočetně snadné, ale výpočet inverze bude obtížný (pokud znám jen 𝑦, tak získat 𝑓(𝑥) 
je obtížné). Pro nás bude takovou vhodnou funkcí umocnění v modulární aritmetice.

Hodnoty 𝑔𝑥(mod 𝑝) Poznámka 33

Hodnoty výrazu 𝑔𝑥(mod 𝑝) se chovají pseudonáhodně.

Postup (Všechna vybíraná čísla jsou z prvočíselného tělesa.)
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1. Alice a Bob si zvolí velká veřejná prvočísla 𝑝 a 𝑔 (obě ∈ 𝐺𝐹 ∗(𝑝))
2. Oba vyberou náhodně tajná čísla 𝑎 a 𝑏
3. Alice vypočítá 𝐴 ≡ 𝑔𝑎(mod 𝑝) a Bob 𝐵 ≡ 𝑔𝐵(mod 𝑝)
4. Alice a Bob si vyřejně vymění 𝐴 a 𝐵
5. Alice vypočítá 𝐴′ ≡ 𝐵𝑎(mod 𝑝) a Bob 𝐵′ ≡ 𝐴𝑏(mod 𝑝)
6. Potom platí 𝐴′ ≡ 𝐵′(mod 𝑝) a toto číslo se může použít jako tajný klíč.

9.1.3  Diffie-Hellmanův problém

Ukazuje a zajišťuje bezpečnost této výměny. [TBA]

9.2  Generování bezpečných prvočísel

Prvočíslo 𝑝 nazveme jako bezpečné pokud má tvar 𝑝 = 2𝑞 + 1, kde 𝑞 je také prvočíslo a nazývá se 
Sophie Germainové prvočíslo. Je to kvůli tomu, že plno útoků je založených (a efektvních) pokud 
číslo 𝑝 − 1 jde rozložit na plno malých prvočinitelů. Tímto požadavkem se tomuto vyhneme, 
protože 𝑞 je obrovské.

9.2.1  OpenSSL jako praktická ukázka

[TBA]

9.2.2  Odbočka k modulární aritmetice

Pokud je 𝑝 prvočíslo, pak existuje 𝑔 ∈ 𝐺𝐹 ∗(𝑝), tak že každý prvek z toho je možné vyjádřit 
jako jeho mocninu. Tomuto 𝑔 říkáme generátor (případně primitivní kořen).

Dále platí, že 𝐺𝐹 ∗(𝑝) má 𝜑(𝑝 − 1) generátorů.

Prvočíselné pole 𝐺𝐹(𝑝), kde 𝐺𝐹 ∗(𝑝) znamená, že je bez nulového prvku (jde o ∗).

Pracujeme s problémem diskrétního logaritmu, kde jde o nalezení specifického exponentu.

𝑔𝑥 ≡ ℎ(mod 𝑝)

V praxi se spíše pracuje s obecnější verzí, kde 𝑔 nemusí být generátor.

9.3  Šiforvání založené na zavazadlovém problému

Existuje varianta tohoto progblému, která je řešitelná v polynomickém čase. Důležitou roli tu 
hraje superrostoucí posloupnost, což je taková posloupnost, kde prvek musí být větší než 
součet všech předchozích.

Super rostoucí posloupnost Definice 34

Posloupnost (𝑎𝑛) je super rostoucí jestliže každý další prvek je větší než součet všech 
předchozích. Např.: 𝑎1 = 2, 𝑎2 = 5, 𝑎3 = 12, 𝑎4 = 30.

𝑎𝑛 > ∑
𝑛−1

𝑖=1
𝑎𝑖
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Příklad 35

Máme množinu {27, 3, 6, 2, 52, 13}, která by tvořila superrostoucí posloupnost. Celková 
hmotnost 𝑆 = 70.

1. Jelikož 𝑆 > 52, tak 52 je součástí zavazadla (řešení).
2. Vznikne nová posloupnost {2, 3, 6, 13, 27} i nová celková hmotnost 𝑆 = 70 − 52 = 18
3. Protože 𝑆 < 27, tak 27 nebude součástí zavazadla
4. Vznikne opět nová posloupnost {2, 3, 6, 13} i „nová“ celková hmotnost 𝑆 = 18
5. ⋮

V konečném důsledku se algoritmus zastaví (protože 𝑆 = 0) a odpoví na danou otázku i 
ukáže co bude součástí zavazadla.

Z pohledu šifer je problém následující:
• zpráva je jako výběr položek do zavazadla (𝑏𝑖)
• soukromý klíč je superrostoucí posloupnost
• veřejný klíč je obtížná posloupnost vypočítaná ze superrostoucí pomocí

𝑇 (𝑀𝑖) = 𝑀𝑖 ⋅ 𝑚 mod 𝑛
• kryptogram je celková hmotnost zavazadla.

Šifrovací proces
1. Bob zvolí libovolnou superrostoucí posloupnost a čísla 𝑚, 𝑛 splňující podmínky (soukromý 

klíč)
2. Bob z ní vypočítá obtížnou posloupnost (veřejný klíč)
3. Alice rozdělí otevřený text (binární tvar) na bloky, kde počet bitů každého bloku odpovídá 

počtu čísel v posloupnosti
4. Alice zašifruje každý blok pomocí veřejného klíče a odešle Bobovi

Dešifrovací proces
1. Bob zná soukromý klíč (superrostoucí posloupnost a 𝑚, 𝑛)
2. Bob vypočítá inverzní prvek 𝑚−1 k 𝑚 v ⟨ℤ𝑛, ⋅⟩
3. Bob každé číslo kryptogramu vynásobí číslem 𝑚−1 modulo 𝑛 (tyto čísla představují 

hmotnosti položek zavazadla)
4. Nakonec Bob vyřeší v polynomickém čase zavazadlový problém pro superrosstoucí zava

zadlo

Poznámka 36

Slabinou tohoto přístupu je, že šifrovací funkce je lineární. Vztah tedy může být popsán 
pomocí lineárních rovnice, pro jejichž řešení máme dobré metody.

9.4  Zpřesnění matematických pojmů

Zanedbatelná funkce Definice 37

Funkce 𝜖 : 𝑁 → [0, 1] se nazývá zanedbatelnou funkcí, jestliže pro každé 𝑐 ∈ 𝑁  existuje 
𝑛0 ∈ 𝑁  takové, že pro všechna 𝑛 > 𝑛0 platí

𝜖(𝑛) < 1
𝑛𝑐
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Taková funkce tedy velmi rychle klesá k nule. Událostí vyskytující se za zanedbatelnou pravdě­

podobností můžeme ignorovat.

Jednosměrná funkce Definice 38

V polynomickém čase vyčíslitelná funkce 𝑓 je jednosměrnou funkcí, jestliže pro každý 
pravděpodobnostní polynomický algoritmus 𝐴 existuje zanedbatelná funkce 𝜖 taková, že 
pro všechna 𝑛, 𝑥, 𝑦 taková, že |𝑥| = 𝑛, 𝑦 = 𝑓(𝑥), platí

𝑃(𝐴(𝑦) = 𝑥) < 𝜖(𝑛)

Neboli každý pravděpodobnostní polynomický algoritmus, který vypočítá z obrazu 𝑦 správný 
vzor 𝑥′ uspěje se zanedbatelnou pravděpodobností.

Domněnka Theorem 39

Domníváme se, že existuje alespoň jedna jednsoměrná funkce.

Pokud by se tato doměnka potvrdila, znamenalo by to 𝑃 ≠ 𝑁𝑃 . Ale máme několik kandidátů, 
které se zatím nepdoařilo invertovat. Jako příklad slouží 3 funkce:

• umocnění funkce 𝑓(𝑥) = 𝑔𝑥 mod 𝑝 pro daný generátor 𝑔 a provčíslo 𝑝. Invertování takovéto 
funkce by znamenalo vyřešit Problém diskrétního logaritmu (DLP)

• funkce 𝑓(𝑥) = 𝐴 ⋅ 𝐵, kde |𝑥| = 𝑛 kóduje čísla 𝐴 a 𝐵 jejichž délka je 𝑛
2  . Invertování by 

znamenalo vyřešit Integer Factorization problem (IFP).
• nakonec funkce 𝑓(𝑥) = 𝑥𝑒 mod 𝑛, kde 𝑛 je velké složené číslo a 𝑒 je nesoudělné s 𝜑(𝑛). 

Vyřešení tohot by znamenalo vyřešit problém RSA.

9.5  Algoritmus RSA

Pojmenována podle tvůrců. Jedná se o asymetrcikou šifru považovanou za velmi bezpečnou. 
Používá se pro bezpečnou výměnu klíčů při symetrickém šifrování (tz.v hybridní šifrování, 
protokoly SSL a TSL) či digitální podpis.

9.5.1  Generování soukromého a veřejného klíče RSA

1. Zvolí se dvě různá provčísla 𝑝 a 𝑞 (cca stejně velká, obvykle alespoň 1024 až 3072 bitů)
2. Vypočítá se součin 𝑛 = 𝑝 ⋅ 𝑞 (platí 𝜑(𝑛) = (𝑝 − 1) · (𝑞 − 1))
3. Náhodně se zvolí 𝑒 ∈ {1, 2, …, 𝜑(𝑛) − 1} tak, aby

gcd(𝑒, 𝜑(𝑛)) = 1

(𝑒 … veřejný exponent, často je 3)
4. Pomocí rozšířeného Euklidova algortimu vypočteme inverzi 𝑑 = 𝑒 − 1 mod 𝜑(𝑛)
5. Pak platí

• 𝑘𝑒 = ⟨𝑒, 𝑛⟩ … veřejný klíč
• 𝑘𝑑 = 𝑑 … soukromý klíč
• čísla 𝑝, 𝑞 se mohou odložit, ale nikdy se nesmí zveřejnit

9.5.2  Šifrování a dešifrování

Text 𝑥 ∈ 𝑀  se rozdělí na číselné bloky 𝑥𝑖, tak aby 𝑥𝑖 < 𝑛. Vztahy jsou pak následující:

𝑒(𝑥𝑖, 𝑘𝑒) = 𝑥𝑒
𝑖 mod 𝑛
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𝑑(𝑦𝑖, 𝑘𝑑)

Příklad 40

V prezentaci na slajdech 41 a 42 přesně detailně rozepsaná ukázka.

Věta Theorem 41

Algoritmus RSA pracuje správně, tzn. platí

𝑑(𝑒(𝑥, 𝑘𝑒), 𝑘𝑑) = 𝑥

pro libovbolný blok 𝑥 otevřeného textu.

K této větě je i důkaz (slajdy 43-45). □

9.5.3  Praktické aspekty a využití

Praktické využití algoritmu RSA rozebráno v následujících příkladech.

Generování soukromého klíče
Pro výpočet modulo 𝑛 potřebujeme 2 velká prvočísla (𝑛 = 𝑝 ⋅ 𝑞). Pokud má mít 𝑛 1024 bitů, 
pak 𝑝 i 𝑞 musí mít po 512 bitech. Náhodně generujeme číslo délky, kterou chceme a provedem 
test provčíselnosti. Mohou nasta 2 problémy:

1. Kolik čísel musíme v průměru vygenerovat, abychom narazili na prvočíslo?(není pravdě
podobnost objevení se prvočísla příliš malá?)

2. Jak efektivně provést test prvočíslenosti?

Problém pravděpodobnosti objevení prvočísla
S délkou prvočísel ubývá. Platí, že náhodně vygenerované číslo 𝑝 mezi 1 a 𝑁  je prvočíslem s 
pravděpodobností cca 1

ln 𝑁 . Pokud testujeme pouze lichá čísla, pak vzorec upravíme na 2
ln 𝑁 . Pro 

𝑛 délky oněch 1024 bitů by tedy platilo 2
ln 2512 ≈ 1

177

Problém test prvočíselnosti
Existuje několik algoritmů, které můžeme zvolit. Existují i deterministické pracující v polyno
mickém čase. V praxi se najčastěji využívá algoritmus typu Monte Carlo, který však nevrací 
vždy správnou odpověď ⇒ spouští se vícekrát čímž se snižuje pravděpodobnost nesprávného 
výsledku.

9.5.4  Bezpečnost RSA

Bezpečnost RSA je založena na předpokladu, že problém faktorizace IFP je pro velké moduly 
obtížný. S přesnostní však nevíme do jaké třídy spadá (pravděpodobně NP-complete, ale určitě 
NP a co-NP).

9.5.5  Faktorizace Pollardova 𝑝 − 1 metoda

B-power smooth čísla Definice 42

Tak nazveme číslo 𝑛 jestliže jsou mocniny prvočísel v jeho prvočíselném rozkladu menší 
než 𝐵.

Např. 𝑛 = 21600 je 33-power smooth, protože 𝑛 = 25 ⋅ 33 ⋅ 52 a všechna tato čísla jou menší 
než 33.
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Předpokládejme, že číslo 𝑛 = 𝑝 ⋅ 𝑞 a 𝑝 − 1 je B-power smooth a 𝑞 − 1 není B-power smooth. 
Pak platí (𝑝 − 1)|𝐵! a současně je nepravděpodobné, že (𝑞 − 1)|𝐵!. Vypočítáme 𝑎 jako 𝑎 ≡
2𝐵!(mod 𝑛). A protože 𝑛 = 𝑝 ⋅ 𝑞, paltí 𝑎 ≡ 2𝐵!(mod 𝑝) a 𝑎 ≡ 2𝐵!(mod 𝑞).

9.5.6  Faktorizace rozdíl druhých mocnin

9.5.7  Faktorizace další metody

1. Continued Fraction Method
2. Quadratic Sieve
3. Eliptic Curve Method
4. Number Fiedl Sieve

čsílo kratší než 256 bitů může být v roce 2025 faktorizováno na obyčejném osobním počítači. 
Obvykle používaná délka module je 1024 až 3072 bitů.

9.5.8  Útok pomocí postranního kanálu

Při implementaci vznikají postranní kanály, které lze využít k útoku aniž bychom museli 
provádět kryptoanalýzu. Např. časový postranní kanál nebo chybvý postranní kanál.

Bleichenbacherův útok
Útočník odychtí kryptogram 𝑐. Náhodnými konstantami 𝑠𝑖 modifikuje 𝑐 na řadu čísel tvaru 
𝑐𝑖 = 𝑐 ⋅ 𝑠𝑒

𝑖 mod, které zašle příjemci.Příjemce 𝑐𝑖 dešifruje a zkontroluje, zdali je formátu 02. 
Pokud není, pošle chybové hlášení a útočník zopakuje postup. Jakmile se útočník trefí do zprávy 
formátu 02, ví že zprávu odhalil.

9.6  Testy prvočíselnosti

Pomocí těchto testů (algoritmických postupů) jsme schopni ověřit zda se jedná o prvočíslo. 
Testy mají různé výhody, nevýhody a specifika.

9.6.1  Fermatův test

Založen na Malé Fermatově větě. Ale dá se použít jen pro testování složenosti daného čísla ⇒ 
není úplně vhodný pro test prvočíselnosti. Důležitý pojem tzv. Carmichaelova čísla, což jsou 
čísla, která tímto testem projdou, ale jsou to čísla složená (naštěstí je jich poměrně málo).

Malá Fermatova věta Theorem 43

Pro každé prvočíslo 𝑝 a každé celé číslo 𝑎 platí

𝑎𝑝 ≡ 𝑎(mod 𝑝)

Tzn. číslo (𝑎𝑝 − 𝑎) je dělitelné prvočíslem 𝑝. Je založena na Eulerově větě.

Eulerova věta Theorem 44

Pro každé přirozené číslo 𝑛 a přirozené číslo 𝑎 nesoudělné s 𝑛 platí

𝑎𝜑(𝑛) ≡ 1(mod 𝑛)
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Idea Definice 45

Základní myšlenka je, že pokud najdeme 𝑎 ∈ ℤ∗
𝑛, pro které neplatí 𝑎𝑛−1 ≡ 1(mod 𝑛), pak 

𝑎 je svědkem složenosti 𝑛.

ℤ∗
𝑛 obsahuje všechna celá čísla 𝑎 která splňují:
• leži v rozsahu 1 ≤ 𝑎 < 𝑛
• jsou nesoudělná s 𝑛

Pokud bychom postup opakovali můžeme pravděpodobnost, s kterou známe výsledek zpřes
ňovat.

9.6.2  Miller-Rabinův test

Tento test nemá Carmichaelova čísla. Založen na následující větě.

Věta Theorem 46

Nechť 𝑝 je prvočíslo, pro které platí

𝑝 − 1 = 2𝑘𝑞

kde 𝑞 je liché číslo. Dále nechť 𝑎 je číslo takové, že gcd(𝑎, 𝑝) = 1. Pak platí jedno z 
následujících tvrzení

1. 𝑎𝑞 ≡ 1(mod 𝑝)
2. jedno z čísel 𝑎𝑞, 𝑎2𝑞, 𝑎4𝑞, …, 𝑎2𝑘−1𝑞 je kongurentní s −1 mod 𝑝

Při tomto testu se opět vychází z obměněné implikace. Nechť 𝑛 je liché číslo, pro které platí 
𝑛 − 1 = 2𝑘𝑞, kde 𝑞 je liché číslo. Číslo 𝑎 takové, že gcd(𝑎, 𝑛) = 1 se nazývá svědek složenosti 
čísla 𝑛, jestliže současně platí tyto dvě podmínky:

1. 𝑎𝑞 ≢ 1(mod 𝑛)
2. 𝑎2𝑖𝑞 ≢ −1(mod 𝑛) pro všechna 𝑖 = 0, 1, …, 𝑘 − 1

9.6.3  Rychlé umocnění

Výhodou symetrických šifer je, že se počítá s malými čísly. Modulo 𝑛 je obvykle veliké číslo. 
Pro 𝑒 délky 1024 bitů je pro výpočet 𝑥𝑒 mod 𝑛 potřeba provést 21024 násobení (odhadovaný 
počet atomů ve vesmíru je 2300). Toto je zcela zásdaní, neboť bez rychlého umocnění by nebylo 
šifrování RSA použitelné. Pro urychlení se používá kombinace násobení (MUL) a výpočtu druhé 
mocniny (SQ).

𝑥9 : 𝑥
SQ

⏠→ 𝑥2
SQ

⏠→ 𝑥4
SQ

⏠→ 𝑥8
MUL
⏠→ 𝑥9

Obecně se díváme na číslo tak, že má binární zápis exponentu. MUL pak vkládá na nejméně 
významnou pozici jedničku a SQ posouvá 1 v binárním zápise doleva a na nejméně významnou 
pozici vkládá 0.

𝑥26 = 𝑥11010 : 𝑥1
SQ

⏠→ 𝑥10
MUL
⏠→ 𝑥11

SQ

⏠→ 𝑥110…

Složitost rychlého umocnění
Počet SQ operací je roven délce bitového zápisu exponentu 𝑒 (#SQ = 𝑡). Počet operací MUL je roven 
Hammingově váze 𝑒 (Hammingově vzdálenosti 𝑒 od nuly). Pro průměrný počet MUL operací platí 
#MUL = 0,5𝑡 a platí tedy
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#SQ + #MUL = 1, 5𝑡

Složitost tohoto algoritmu je tedy linerání.

Pokud by měl exponent 1024 bitů, pak při přímém umocnění by se jednalo cca o 10300 operací 
MUL, zatímco při použití rychlého umocnění je to 1516 operací MUL a SQ.

9.7  Šifrování založené na eliptických křivkách (ECC)

Stačí menší veliksot klíčů (256 bitů), což přináší nižší výpočetní náročnost. Ale šifrování je 
velmi silně bezpečné.

Eliptická křivka Definice 47

Je definováno jako

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

kde

4𝑎3 + 27𝑏2 ≠ 0

Navíc definujeme i nevlastní bod 𝑂 (bod ležící v nekonečnu libovolné vertikální přímce). 
Operace sčítání bodů lze definovat jak geometricky, tak algebraicky nad prvočíselnými poli.

Obrázek 13: Eliptické křivky.

Pro součty platí několik vlastností:

𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃

𝑃 + (−𝑃) = 0

(𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅)

𝑃 + 𝑄 = 𝑄 + 𝑃

Bezpečnost ECC je založená na obtížnosti problému jak určit 𝑛 pro daný bod 𝑃  a násobek 𝑄 =
𝑛 ⋅ 𝑃 .

Postup šifrování
1. Alice a Bob se dohodnou na prvočíslu 𝑝, eliptické křivce 𝐸 a na bodu 𝑃 ∈ 𝐸
2. Bob vygeneruje klíče (soukromý 𝑛 a veřejný 𝑄 = 𝑛 ⋅ 𝑃 )
3. Alice si zvolí tajné číslo 𝑘 (efemérní klíč)
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4. Alice azširuje zprávu 𝑀 :

𝐶1 = 𝑘 ⋅ 𝑃

𝐶2 = 𝑀 + 𝑘 ⋅ 𝑄
5. vznikne kryptogram ⟨𝐶1, 𝐶2⟩

Postup dešifrování
1. Bob vypočítá 𝑀 = 𝐶2 − 𝑛 ⋅ 𝐶1 (ano je to kompletní)

10  Digitální podpis

Jedná se o připojení identifikačích údajů autora k dokumentu. Zaručuje autentičnsot zprávy a 
obvykle i integritu podepsaného dokumentu. Využívá se asymetrického šifrování, kryptografické 
hashovací funkce a digitálních certifikátů.

Hlavní myšlenka je založena na obrácení použití veřejného a soukromého klíče. Tento přístup 
se však v praxi nepoužívá, protože by trval moc dlouho.

U odeslané zprávy se spočítá hash, který umožní ověřit její integirtu a urychlí celý prcoes (šifruje 
se pouze hash).

Digitální certifikát Definice 48

Digitální certifikát je elektronický dokument obsahující:
• veřejný klíč
• identifikační údaj o majiteli klíče
• informaci o certifikační autoritě

Cetrifikační autorita vytvoří digitální certifikát tak, že ověří údaje o majiteli veřejného klíče a 
veřejný klíč digitálně podepíše. Tento platný podpis zaručí, že s certifikátem nebylo od vydání 
manipulováno. Pokud tedy věříme autoritě, můžeme věřit i certifikátu jím podepsaném.

Obrázek 14: Podepsání a oveření digitálního podpisu
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11  Zero knowledge proofs

Motivační příklad. Jak dokázat barvoslepému člvoěku, která tužka ze dvou má jakou barvu, 
když jsou až na onu barvu identické.

V tomto přístupu jsou dvě strany – prover a verifier. Ti spolu interagují. Prover má přesvědčit 
verifiera o pravdivosti tvrzení, aniž by mu sdělil přímý důkaz tohoto tvrzení.

11.1  Fiat-Shamirův identifikační protokol

1. Bezpečnostní server (verifier) vygeneruje RSA modul 𝑛 = 𝑝 ⋅ 𝑞
2. 𝑛 zveřejní, 𝑝 a 𝑞 zahodí
3. uživatel (prover) náhodně vygeneruje tajné číslo 𝑠, dále vypočítá číslo 𝑣 = 𝑠2 mod 𝑛, které 

pošle serveru
4. později se chce uživatel identifikovat důkazem, že zná 𝑠, aniž by 𝑠 sdělil

Jeden cyklus protokolu:
1. uživatel náhodně zvolí 𝑟; dále vypočítá 𝑥 = 𝑟2 mod 𝑛, které pošle serveru
2. server náhodně zvolí číslo 𝑏 ∈ {0, 1}, které pošle uživateli
3. uživatel vypočítá číslo 𝑦 = (𝑟 · 𝑠𝑏) mod 𝑛, které pošle serveru
4. server ověří 𝑦2 ≡ 𝑥 · 𝑣𝑏(mod 𝑛)
5. pokud kongruence platí, pak server akceptuje cyklus
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